Search results
Results from the WOW.Com Content Network
A. Dieckmann, Table of Integrals (Elliptic Functions, Square Roots, Inverse Tangents and More Exotic Functions): Indefinite Integrals Definite Integrals; Math Major: A Table of Integrals; O'Brien, Francis J. Jr. "500 Integrals of Elementary and Special Functions". Derived integrals of exponential, logarithmic functions and special functions.
The following is a list of integrals (antiderivative functions) of rational functions. Any rational function can be integrated by partial fraction decomposition of the function into a sum of functions of the form:
The following is a list of integrals (antiderivative functions) of irrational functions. For a complete list of integral functions, see lists of integrals. Throughout this article the constant of integration is omitted for brevity.
In mathematics, the definite integral ()is the area of the region in the xy-plane bounded by the graph of f, the x-axis, and the lines x = a and x = b, such that area above the x-axis adds to the total, and that below the x-axis subtracts from the total.
In 1995, Alan Jeffrey published his Handbook of Mathematical Formulas and Integrals. [22] It was partially based on the fifth English edition of Gradshteyn and Ryzhik's Table of Integrals, Series, and Products and meant as an companion, but written to be more accessible for students and practitioners. [22] It went through four editions up to 2008.
Bioche's rules, formulated by the French mathematician Charles Bioche (1859–1949), are rules to aid in the computation of certain indefinite integrals in which the integrand contains sines and cosines. In the following, () is a rational expression in and .
In calculus and mathematical analysis the limits of integration (or bounds of integration) of the integral () of a Riemann integrable function f {\displaystyle f} defined on a closed and bounded interval are the real numbers a {\displaystyle a} and b {\displaystyle b} , in which a {\displaystyle a} is called the lower limit and b {\displaystyle ...
x i are the roots of the nth Legendre polynomial. This choice of quadrature weights w i and quadrature nodes x i is the unique choice that allows the quadrature rule to integrate degree 2n − 1 polynomials exactly. Many algorithms have been developed for computing Gauss–Legendre quadrature rules.