Search results
Results from the WOW.Com Content Network
When the bottom type is uninhabited, a function whose return type is bottom cannot return any value, not even the lone value of a unit type.In such a language, the bottom type may therefore be known as the zero, never or empty type which, in the Curry–Howard correspondence, corresponds to falsity.
The truth value 'false', or a logical constant denoting a proposition in logic that is always false (often called "falsum" or "absurdum"). The bottom element in wheel theory and lattice theory, which also represents absurdum when used for logical semantics; The bottom type in type theory, which is the
A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula.
The term was coined when variables began to be used for sets and mathematical structures. onto A function (which in mathematics is generally defined as mapping the elements of one set A to elements of another B) is called "A onto B" (instead of "A to B" or "A into B") only if it is surjective; it may even be said that "f is onto" (i. e ...
In mathematics, a relation denotes some kind of relationship between two objects in a set, which may or may not hold. [1] As an example, " is less than " is a relation on the set of natural numbers ; it holds, for instance, between the values 1 and 3 (denoted as 1 < 3 ), and likewise between 3 and 4 (denoted as 3 < 4 ), but not between the ...
In mathematics, addition and multiplication of real numbers are associative. By contrast, in computer science, addition and multiplication of floating point numbers are not associative, as different rounding errors may be introduced when dissimilar-sized values are joined in a different order.
In constructive mathematics, "not empty" and "inhabited" are not equivalent: every inhabited set is not empty but the converse is not always guaranteed; that is, in constructive mathematics, a set that is not empty (where by definition, "is empty" means that the statement () is true) might not have an inhabitant (which is an such that ).
In mathematics, a finitary relation over a sequence of sets X 1, ..., X n is a subset of the Cartesian product X 1 × ... × X n; that is, it is a set of n-tuples (x 1, ..., x n), each being a sequence of elements x i in the corresponding X i.