Search results
Results from the WOW.Com Content Network
Level of measurement or scale of measure is a classification that describes the nature of information within the values assigned to variables. [1] Psychologist Stanley Smith Stevens developed the best-known classification with four levels, or scales, of measurement: nominal, ordinal, interval, and ratio.
Ordinal variables have a meaningful ordering, while nominal variables have no meaningful ordering. A categorical variable that can take on exactly two values is termed a binary variable or a dichotomous variable; an important special case is the Bernoulli variable.
Because variables conforming only to nominal or ordinal measurements cannot be reasonably measured numerically, sometimes they are grouped together as categorical variables, whereas ratio and interval measurements are grouped together as quantitative variables, which can be either discrete or continuous, due to their numerical nature.
In statistics, dichotomous data may only exist at first two levels of measurement, namely at the nominal level of measurement (such as "British" vs "American" when measuring nationality) and at the ordinal level of measurement (such as "tall" vs "short", when measuring height). A variable measured dichotomously is called a dummy variable.
Ordinal data is a categorical, statistical data type where the variables have natural, ordered categories and the distances between the categories are not known. [ 1 ] : 2 These data exist on an ordinal scale , one of four levels of measurement described by S. S. Stevens in 1946.
Scaling of data: One of the properties of the tests is the scale of the data, which can be interval-based, ordinal or nominal. [3] Nominal scale is also known as categorical. [6] Interval scale is also known as numerical. [6] When categorical data has only two possibilities, it is called binary or dichotomous. [1]
In comparison, variables with unordered scales are nominal variables. [1] Visual difference between nominal and ordinal data (w/examples), the two scales of categorical data [2] A nominal variable, or nominal group, is a group of objects or ideas collectively grouped by a particular qualitative characteristic. [3]
A variable of this type is called a dummy variable. If the dependent variable is a dummy variable, then logistic regression or probit regression is commonly employed. In the case of regression analysis, a dummy variable can be used to represent subgroups of the sample in a study (e.g. the value 0 corresponding to a constituent of the control ...