Search results
Results from the WOW.Com Content Network
This is also known as the nth-term test, test for divergence, or the divergence test. ... Gauss's test. Let { a n} be a sequence of positive numbers.
Gauss originally used the Gaussian binomial coefficients in his determination of the sign of the quadratic Gauss sum. [3] Gaussian binomial coefficients occur in the counting of symmetric polynomials and in the theory of partitions. The coefficient of q r in (+)
In mathematics, the integral test for convergence is a method used to test infinite series of monotonic terms for convergence. It was developed by Colin Maclaurin and Augustin-Louis Cauchy and is sometimes known as the Maclaurin–Cauchy test .
In vector calculus, the divergence theorem, also known as Gauss's theorem or Ostrogradsky's theorem, [1] is a theorem relating the flux of a vector field through a closed surface to the divergence of the field in the volume enclosed.
In mathematics, the root test is a criterion for the convergence (a convergence test) of an infinite series.It depends on the quantity | |, where are the terms of the series, and states that the series converges absolutely if this quantity is less than one, but diverges if it is greater than one.
The standard Gaussian measure on . is a Borel measure (in fact, as remarked above, it is defined on the completion of the Borel sigma algebra, which is a finer structure);; is equivalent to Lebesgue measure: , where stands for absolute continuity of measures;
In mathematics, the ratio test is a test (or "criterion") for the convergence of a series =, where each term is a real or complex number and a n is nonzero when n is large. The test was first published by Jean le Rond d'Alembert and is sometimes known as d'Alembert's ratio test or as the Cauchy ratio test.
A different technique, which goes back to Laplace (1812), [3] is the following. Let = =. Since the limits on s as y → ±∞ depend on the sign of x, it simplifies the calculation to use the fact that e −x 2 is an even function, and, therefore, the integral over all real numbers is just twice the integral from zero to infinity.