enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fajans' rules - Wikipedia

    en.wikipedia.org/wiki/Fajans'_rules

    The "size" of the charge in an ionic bond depends on the number of electrons transferred. An aluminum atom, for example, with a +3 charge has a relatively large positive charge. That positive charge then exerts an attractive force on the electron cloud of the other ion, which has accepted the electrons from the aluminum (or other) positive ion.

  3. Periodic trends - Wikipedia

    en.wikipedia.org/wiki/Periodic_trends

    As one moves from left-to-right across a period in the modern periodic table, the ionization energy increases as the nuclear charge increases and the atomic size decreases. The decrease in the atomic size results in a more potent force of attraction between the electrons and the nucleus. However, suppose one moves down in a group. In that case ...

  4. Atomic radii of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Atomic_radii_of_the...

    For more recent data on covalent radii see Covalent radius. Just as atomic units are given in terms of the atomic mass unit (approximately the proton mass), the physically appropriate unit of length here is the Bohr radius, which is the radius of a hydrogen atom. The Bohr radius is consequently known as the "atomic unit of length".

  5. Cation-anion radius ratio - Wikipedia

    en.wikipedia.org/wiki/Cation-anion_radius_ratio

    In condensed matter physics and inorganic chemistry, the cation-anion radius ratio can be used to predict the crystal structure of an ionic compound based on the relative size of its atoms. It is defined as the ratio of the ionic radius of the positively charged cation to the ionic radius of the negatively charged anion in a cation-anion ...

  6. Atomic radius - Wikipedia

    en.wikipedia.org/wiki/Atomic_radius

    The atomic radius of a chemical element is a measure of the size of its atom, usually the mean or typical distance from the center of the nucleus to the outermost isolated electron. Since the boundary is not a well-defined physical entity, there are various non-equivalent definitions of atomic radius.

  7. Pauling's rules - Wikipedia

    en.wikipedia.org/wiki/Pauling's_rules

    For typical ionic solids, the cations are smaller than the anions, and each cation is surrounded by coordinated anions which form a polyhedron.The sum of the ionic radii determines the cation-anion distance, while the cation-anion radius ratio + / (or /) determines the coordination number (C.N.) of the cation, as well as the shape of the coordinated polyhedron of anions.

  8. Ionic radius - Wikipedia

    en.wikipedia.org/wiki/Ionic_radius

    An "anomalous" ionic radius in a crystal is often a sign of significant covalent character in the bonding. No bond is completely ionic, and some supposedly "ionic" compounds, especially of the transition metals, are particularly covalent in character. This is illustrated by the unit cell parameters for sodium and silver halides in the table.

  9. Covalent radius - Wikipedia

    en.wikipedia.org/wiki/Covalent_radius

    The covalent radius, r cov, is a measure of the size of an atom that forms part of one covalent bond. It is usually measured either in picometres (pm) or angstroms (Å), with 1 Å = 100 pm. In principle, the sum of the two covalent radii should equal the covalent bond length between two atoms, R (AB) = r (A) + r (B).