Search results
Results from the WOW.Com Content Network
If the tension on a string is ten lbs., it must be increased to 40 lbs. for a pitch an octave higher. [1] A string, tied at A , is kept in tension by W , a suspended weight, and two bridges, B and the movable bridge C , while D is a freely moving wheel; all allowing one to demonstrate Mersenne's laws regarding tension and length [ 1 ]
This effect is called the stroboscopic effect, and the rate at which the string seems to vibrate is the difference between the frequency of the string and the refresh rate of the screen. The same can happen with a fluorescent lamp, at a rate that is the difference between the frequency of the string and the frequency of the alternating current ...
A model of Melde's experiment: an electric vibrator connected to a cable drives a pulley that suspends a mass that causes tension in the cable. Melde's experiment is a scientific experiment carried out in 1859 by the German physicist Franz Melde on the standing waves produced in a tense cable originally set oscillating by a tuning fork , later ...
Two-frequency beats of a non-dispersive transverse wave. Since the wave is non-dispersive, phase and group velocities are equal. For an ideal string, the dispersion relation can be written as =, where T is the tension force in the string, and μ is the string's mass per unit length. As for the case of electromagnetic waves in vacuum, ideal ...
The phase velocity varies with frequency. The phase velocity is the rate at which the phase of the wave propagates in space. The group velocity is the rate at which the wave envelope, i.e. the changes in amplitude, propagates.
where ω is the frequency of the oscillation, A is the amplitude, and δ is the phase shift of the function. These are determined by the initial conditions of the system. Because cosine oscillates between 1 and −1 infinitely, our spring-mass system would oscillate between the positive and negative amplitude forever without friction.
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.
The Q factor is a parameter that describes the resonance behavior of an underdamped harmonic oscillator (resonator). Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the ...