Search results
Results from the WOW.Com Content Network
The number of transfer units (NTU) method is used to calculate the rate of heat transfer in heat exchangers (especially parallel flow, counter current, and cross-flow exchangers) when there is insufficient information to calculate the log mean temperature difference (LMTD). Alternatively, this method is useful for determining the expected heat ...
Tubular heat exchanger Partial view into inlet plenum of shell and tube heat exchanger of a refrigerant based chiller for providing air-conditioning to a building. A heat exchanger is a system used to transfer heat between a source and a working fluid. Heat exchangers are used in both cooling and heating processes. [1]
It is a kind of exchange using counter flow arrangement. The maximum amount of heat or mass transfer that can be obtained is higher with countercurrent than co-current (parallel) exchange because countercurrent maintains a slowly declining difference or gradient (usually temperature or concentration difference). In cocurrent exchange the ...
In a cross-flow, in which one system, usually the heat sink, has the same nominal temperature at all points on the heat transfer surface, a similar relation between exchanged heat and LMTD holds, but with a correction factor. A correction factor is also required for other more complex geometries, such as a shell and tube exchanger with baffles.
In many types of processes, combustion is used to generate heat, and the recuperator serves to recuperate, or reclaim this heat, in order to reuse or recycle it. The term recuperator refers as well to liquid-liquid counterflow heat exchangers used for heat recovery in the chemical and refinery industries and in closed processes such as ammonia-water or LiBr-water absorption refrigeration cycle.
Temperature vs. heat load diagram of hot stream (H 2 O entering at 20 bar, 473.15 K, and 4 kg/s) and cold stream (R-11 entering at 18 bar, 303.15 K, and 5 kg/s) in a counter-flow heat exchanger. "Pinch" is the point of closest approach between the hot and cold streams in the T vs. H diagram.
The heat transfer rate for a two-fluid counterflow heat exchanger is given by Q = U A Δ T m {\displaystyle {Q=UA\Delta T_{m}}} In order to better illustrate the benefits of enhancement, the total length 'L' of the tube is multiplied and divided in the equation
Counterflow Centrifugation Elutriation (CCE) a cell separating technique; Counterflow in Cooling tower. and Cooling tower's contact fill, of towers that wind streams vertically upward; Counterflow steam engine, such as Uniflow steam engine; Counterflow heat exchanger in Cryocooler or Recuperator; Counterflow in quantum turbulence