Search results
Results from the WOW.Com Content Network
A Newtonian fluid is a power-law fluid with a behaviour index of 1, where the shear stress is directly proportional to the shear rate: = These fluids have a constant viscosity, μ, across all shear rates and include many of the most common fluids, such as water, most aqueous solutions, oils, corn syrup, glycerine, air and other gases.
The use of the word "law" in referring to the Glen-Nye model of ice rheology may obscure the complexity of factors which determine the range of viscous ice flow parameter values even within a single glacier, as well as the significant assumptions and simplifications made by the model itself. [13] [14] [7]
The power law model is used to display the behavior of Newtonian and non-Newtonian fluids and measures shear stress as a function of strain rate. The relationship between shear stress, strain rate and the velocity gradient for the power law model are: τ x y = − m | γ ˙ | n − 1 d v x d y , {\displaystyle \tau _{xy}=-m\left|{\dot {\gamma ...
Under certain circumstances, flows of granular materials can be modelled as a continuum, for example using the μ rheology. Such continuum models tend to be non-Newtonian, since the apparent viscosity of granular flows increases with pressure and decreases with shear rate. The main difference is the shearing stress and rate of shear.
In fluid dynamics, a Cross fluid is a type of generalized Newtonian fluid whose viscosity depends upon shear rate according to the Cross Power Law equation: (˙) = + + (˙)where (˙) is viscosity as a function of shear rate, is the infinite-shear-rate viscosity, is the zero-shear-rate viscosity, is the time constant, and is the shear-thinning index.
This book contains several examples of different non-dimensionalizations and scalings of the Navier–Stokes equations, see p. 430. Krantz, William B. (2007). Scaling Analysis in Modeling Transport and Reaction Processes: A Systematic Approach to Model Building and the Art of Approximation. John Wiley & Sons. ISBN 9780471772613.
Ordinary paint is one example of a shear-thinning fluid, while oobleck provides one realization of a shear-thickening fluid. Finally, the yield stress quantifies the amount of stress that the fluid may experience before it yields and begins to flow. This non-Newtonian fluid model was introduced by Winslow Herschel and Ronald Bulkley in 1926. [1 ...
The simplest model of the dense fluid viscosity is a (truncated) power series of reduced mole density or pressure. Jossi et al. (1962) [14] presented such a model based on reduced mole density, but its most widespread form is the version proposed by Lohrenz et al. (1964) [15] which is displayed below.