Search results
Results from the WOW.Com Content Network
A Newtonian fluid is a power-law fluid with a behaviour index of 1, where the shear stress is directly proportional to the shear rate: = These fluids have a constant viscosity, μ, across all shear rates and include many of the most common fluids, such as water, most aqueous solutions, oils, corn syrup, glycerine, air and other gases.
The use of the word "law" in referring to the Glen-Nye model of ice rheology may obscure the complexity of factors which determine the range of viscous ice flow parameter values even within a single glacier, as well as the significant assumptions and simplifications made by the model itself. [13] [14] [7]
The power law model is used to display the behavior of Newtonian and non-Newtonian fluids and measures shear stress as a function of strain rate. The relationship between shear stress, strain rate and the velocity gradient for the power law model are: τ x y = − m | γ ˙ | n − 1 d v x d y , {\displaystyle \tau _{xy}=-m\left|{\dot {\gamma ...
This book contains several examples of different non-dimensionalizations and scalings of the Navier–Stokes equations, see p. 430. Krantz, William B. (2007). Scaling Analysis in Modeling Transport and Reaction Processes: A Systematic Approach to Model Building and the Art of Approximation. John Wiley & Sons. ISBN 9780471772613.
Rheometry (from Greek ῥέος (rheos) 'stream') generically refers to the experimental techniques used to determine the rheological properties of materials, [1] that is the qualitative and quantitative relationships between stresses and strains and their derivatives.
Under certain circumstances, flows of granular materials can be modelled as a continuum, for example using the μ rheology. Such continuum models tend to be non-Newtonian, since the apparent viscosity of granular flows increases with pressure and decreases with shear rate. The main difference is the shearing stress and rate of shear.
The Herschel–Bulkley fluid is a generalized model of a non-Newtonian fluid, in which the strain experienced by the fluid is related to the stress in a complicated, non-linear way. Three parameters characterize this relationship: the consistency k , the flow index n , and the yield shear stress τ 0 {\displaystyle \tau _{0}} .
The distributions of a wide variety of physical, biological, and human-made phenomena approximately follow a power law over a wide range of magnitudes: these include the sizes of craters on the moon and of solar flares, [2] cloud sizes, [3] the foraging pattern of various species, [4] the sizes of activity patterns of neuronal populations, [5] the frequencies of words in most languages ...