Search results
Results from the WOW.Com Content Network
A floating-point system can be used to represent, with a fixed number of digits, numbers of very different orders of magnitude — such as the number of meters between galaxies or between protons in an atom. For this reason, floating-point arithmetic is often used to allow very small and very large real numbers that require fast processing times.
IEEE 754-1985 [1] is a historic industry standard for representing floating-point numbers in computers, officially adopted in 1985 and superseded in 2008 by IEEE 754-2008, and then again in 2019 by minor revision IEEE 754-2019. [2]
The Unum Number Format: Mathematical Foundations, Implementation and Comparison to IEEE 754 Floating-Point Numbers (PDF) (Bachelor thesis). Universität zu Köln, Mathematisches Institut. arXiv: 1701.00722v1. Archived (PDF) from the original on 2017-01-07; Sterbenz, Pat H. (1974-05-01). Floating-Point Computation. Prentice-Hall Series in ...
Download as PDF; Printable version; In other projects Wikimedia Commons; ... IBM hexadecimal floating-point; IEEE 754-1985; IEEE 754-2008; IEEE 754-2008 revision ...
The IEEE Standard for Floating-Point Arithmetic (IEEE 754) is a technical standard for floating-point arithmetic originally established in 1985 by the Institute of Electrical and Electronics Engineers (IEEE). The standard addressed many problems found in the diverse floating-point implementations that made them difficult to use reliably and ...
The significand (or mantissa) of an IEEE floating-point number is the part of a floating-point number that represents the significant digits. For a positive normalised number, it can be represented as m 0.m 1 m 2 m 3...m p−2 m p−1 (where m represents a significant digit, and p is the precision) with non-zero m 0.
The number 123.45 can be represented as a decimal floating-point number with the integer 12345 as the significand and a 10 −2 power term, also called characteristics, [11] [12] [13] where −2 is the exponent (and 10 is the base). Its value is given by the following arithmetic: 123.45 = 12345 × 10 −2.
Like the binary floating-point formats, the number is divided into a sign, an exponent, and a significand. Unlike binary floating-point, numbers are not necessarily normalized; values with few significant digits have multiple possible representations: 1×10 2 =0.1×10 3 =0.01×10 4, etc. When the significand is zero, the exponent can be any ...