enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tensor Processing Unit - Wikipedia

    en.wikipedia.org/wiki/Tensor_Processing_Unit

    Tensor Processing Unit (TPU) is an AI accelerator application-specific integrated circuit (ASIC) developed by Google for neural network machine learning, using Google's own TensorFlow software. [2] Google began using TPUs internally in 2015, and in 2018 made them available for third-party use, both as part of its cloud infrastructure and by ...

  3. TensorFloat-32 - Wikipedia

    en.wikipedia.org/wiki/TensorFloat-32

    The binary format is: 1 sign bit; 8 exponent bits; 10 fraction bits (also called mantissa, or precision bits) The total 19 bits fits within a double word (32 bits), and while it lacks precision compared with a normal 32 bit IEEE 754 floating point number, provides much faster computation, up to 8 times on a A100 (compared to a V100 using FP32).

  4. General-purpose computing on graphics processing units

    en.wikipedia.org/wiki/General-purpose_computing...

    Because the GPU has fast and local hardware access to every pixel or other picture element in an image, it can analyze and average it (for the first example) or apply a Sobel edge filter or other convolution filter (for the second) with much greater speed than a CPU, which typically must access slower random-access memory copies of the graphic ...

  5. TensorFlow - Wikipedia

    en.wikipedia.org/wiki/TensorFlow

    TensorFlow serves as a core platform and library for machine learning. TensorFlow's APIs use Keras to allow users to make their own machine-learning models. [33] [43] In addition to building and training their model, TensorFlow can also help load the data to train the model, and deploy it using TensorFlow Serving. [44]

  6. Hardware for artificial intelligence - Wikipedia

    en.wikipedia.org/wiki/Hardware_for_artificial...

    Specialized computer hardware is often used to execute artificial intelligence (AI) programs faster, and with less energy, such as Lisp machines, neuromorphic engineering, event cameras, and physical neural networks. Since 2017, several consumer grade CPUs and SoCs have on-die NPUs. As of 2023, the market for AI hardware is dominated by GPUs. [1]

  7. AI accelerator - Wikipedia

    en.wikipedia.org/wiki/AI_accelerator

    An AI accelerator, deep learning processor or neural processing unit (NPU) is a class of specialized hardware accelerator [1] or computer system [2] [3] designed to accelerate artificial intelligence (AI) and machine learning applications, including artificial neural networks and computer vision.

  8. Google Tensor - Wikipedia

    en.wikipedia.org/wiki/Google_Tensor

    "Tensor" is a reference to Google's TensorFlow and Tensor Processing Unit technologies, and the chip is developed by the Google Silicon team housed within the company's hardware division, led by vice president and general manager Phil Carmack alongside senior director Monika Gupta, [15] in conjunction with the Google Research division.

  9. Flux (machine-learning framework) - Wikipedia

    en.wikipedia.org/wiki/Flux_(machine-learning...

    For example, GPU support is implemented transparently by CuArrays.jl. [8] This is in contrast to some other machine learning frameworks which are implemented in other languages with Julia bindings, such as TensorFlow.jl (the unofficial wrapper, now deprecated), and thus are more limited by the functionality present in the underlying ...