enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quickselect - Wikipedia

    en.wikipedia.org/wiki/Quickselect

    In computer science, quickselect is a selection algorithm to find the kth smallest element in an unordered list, also known as the kth order statistic.Like the related quicksort sorting algorithm, it was developed by Tony Hoare, and thus is also known as Hoare's selection algorithm. [1]

  3. Median of medians - Wikipedia

    en.wikipedia.org/wiki/Median_of_medians

    In computer science, the median of medians is an approximate median selection algorithm, frequently used to supply a good pivot for an exact selection algorithm, most commonly quickselect, that selects the kth smallest element of an initially unsorted array. Median of medians finds an approximate median in linear time.

  4. Selection algorithm - Wikipedia

    en.wikipedia.org/wiki/Selection_algorithm

    As a baseline algorithm, selection of the th smallest value in a collection of values can be performed by the following two steps: . Sort the collection; If the output of the sorting algorithm is an array, retrieve its th element; otherwise, scan the sorted sequence to find the th element.

  5. Sorting algorithm - Wikipedia

    en.wikipedia.org/wiki/Sorting_algorithm

    Related problems include approximate sorting (sorting a sequence to within a certain amount of the correct order), partial sorting (sorting only the k smallest elements of a list, or finding the k smallest elements, but unordered) and selection (computing the kth smallest element). These can be solved inefficiently by a total sort, but more ...

  6. All nearest smaller values - Wikipedia

    en.wikipedia.org/wiki/All_nearest_smaller_values

    Berkman, Schieber & Vishkin (1993) showed how to solve the all nearest smaller values problem efficiently on a concurrent-read concurrent-write Parallel Random Access Machine. For a sequence of n values, stored as an array , they use a doubly logarithmic tree to show that the problem may be solved in time O(log log n ) using a linear amount of ...

  7. Floyd–Rivest algorithm - Wikipedia

    en.wikipedia.org/wiki/Floyd–Rivest_algorithm

    The following pseudocode rearranges the elements between left and right, such that for some value k, where left ≤ k ≤ right, the kth element in the list will contain the (k − left + 1)th smallest value, with the ith element being less than or equal to the kth for all left ≤ i ≤ k and the jth element being larger or equal to for k ≤ j ≤ right:

  8. Partial sorting - Wikipedia

    en.wikipedia.org/wiki/Partial_sorting

    A further relaxation requiring only a list of the k smallest elements, but without requiring that these be ordered, makes the problem equivalent to partition-based selection; the original partial sorting problem can be solved by such a selection algorithm to obtain an array where the first k elements are the k smallest, and sorting these, at a total cost of O(n + k log k) operations.

  9. Order statistic - Wikipedia

    en.wikipedia.org/wiki/Order_statistic

    The problem of computing the kth smallest (or largest) element of a list is called the selection problem and is solved by a selection algorithm. Although this problem is difficult for very large lists, sophisticated selection algorithms have been created that can solve this problem in time proportional to the number of elements in the list ...