enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Thorium fuel cycle - Wikipedia

    en.wikipedia.org/wiki/Thorium_fuel_cycle

    Another challenge associated with the thorium fuel cycle is the comparatively long interval over which 232 Th breeds to 233 U. The half-life of 233 Pa is about 27 days, which is an order of magnitude longer than the half-life of 239 Np. As a result, substantial 233 Pa develops in thorium-based fuels. 233 Pa

  3. Thorium - Wikipedia

    en.wikipedia.org/wiki/Thorium

    The isotopes produced in the thorium fuel cycle are mostly not transuranic, but some of them are still very dangerous, such as 231 Pa, which has a half-life of 32,760 years and is a major contributor to the long-term radiotoxicity of spent nuclear fuel.

  4. Thorium-based nuclear power - Wikipedia

    en.wikipedia.org/wiki/Thorium-based_nuclear_power

    A sample of thorium. Thorium-based nuclear power generation is fueled primarily by the nuclear fission of the isotope uranium-233 produced from the fertile element thorium.A thorium fuel cycle can offer several potential advantages over a uranium fuel cycle [Note 1] —including the much greater abundance of thorium found on Earth, superior physical and nuclear fuel properties, and reduced ...

  5. Isotopes of thorium - Wikipedia

    en.wikipedia.org/wiki/Isotopes_of_thorium

    The remainder of the chain is quick; the longest half-lives in it are 5.75 years for radium-228 and 1.91 years for thorium-228, with all other half-lives totaling less than 15 days. [55] 232 Th is a fertile material able to absorb a neutron and undergo transmutation into the fissile nuclide uranium-233, which is the basis of the thorium fuel ...

  6. Thorium-232 - Wikipedia

    en.wikipedia.org/wiki/Thorium-232

    It has a half life of 14.05 billion years, which makes it the longest-lived isotope of thorium. It decays by alpha decay to radium-228 ; its decay chain terminates at stable lead-208 . Thorium-232 is a fertile material ; it can capture a neutron to form thorium-233, which subsequently undergoes two successive beta decays to uranium-233 , which ...

  7. Uranium-233 - Wikipedia

    en.wikipedia.org/wiki/Uranium-233

    or U-233) is a fissile isotope of uranium that is bred from thorium-232 as part of the thorium fuel cycle. Uranium-233 was investigated for use in nuclear weapons and as a reactor fuel. [2] It has been used successfully in experimental nuclear reactors and has been proposed for much wider use as a nuclear fuel. It has a half-life of 160,000 years.

  8. Inside the underground lab in China tasked with solving a ...

    www.aol.com/news/inside-underground-lab-china...

    A giant sphere 700 m (2,300 ft) underground with thousands of light-detecting tubes will be sealed in a 12-storey cylindrical pool of water in coming months for an experiment that will shine new ...

  9. Spent nuclear fuel - Wikipedia

    en.wikipedia.org/wiki/Spent_nuclear_fuel

    For instance, the use of MOX fuel (239 Pu in a 238 U matrix) is likely to lead to the production of more 241 Am and heavier nuclides than a uranium/thorium based fuel (233 U in a 232 Th matrix). For highly enriched fuels used in marine reactors and research reactors , the isotope inventory will vary based on in-core fuel management and reactor ...