enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. File:Turbines impulse v reaction.svg - Wikipedia

    en.wikipedia.org/wiki/File:Turbines_impulse_v...

    The factual accuracy of this diagram or the file name is disputed. Reason: Überdruckturbine: die oberste Grafik zeigt eine Turbine mit Reaktionsgrad 1, der Druckverlauf unten zeigt eine Turbine mit Reaktionsgrad 0.5.

  3. Compounding of steam turbines - Wikipedia

    en.wikipedia.org/wiki/Compounding_of_steam_turbines

    Fig-3: Schematic Diagram of Pressure compounded Impulse Turbine. The pressure compounded Impulse turbine is also called a Rateau turbine, after its inventor. This is used to solve the problem of high blade velocity in the single-stage impulse turbine. It consists of alternate rings of nozzles and turbine blades.

  4. Steam turbine - Wikipedia

    en.wikipedia.org/wiki/Steam_turbine

    In 1827 the Frenchmen Real and Pichon patented and constructed a compound impulse turbine. [11] The first steam turbine-powered ship Turbinia: fastest in the world at that time. The modern steam turbine was invented in 1884 by Charles Parsons, whose first model was connected to a dynamo that generated 7.5 kilowatts (10.1 hp) of electricity. [12]

  5. Degree of reaction - Wikipedia

    en.wikipedia.org/wiki/Degree_of_Reaction

    The diagram shows the optimization of total - to - static efficiency at a given stage loading factor, by a suitable choice of reaction. It is evident from the diagram that for a fixed stage loading factor that there is a relatively small change in total-to-static efficiency for a wide range of designs.

  6. Pressure compounding in turbines - Wikipedia

    en.wikipedia.org/wiki/Pressure_compounding_in...

    The exit steam from one turbine is made to enter the nozzle of the succeeding turbine. Each of the simple impulse turbines would then be termed a "stage" of the turbine. Each stage comprises its ring of nozzle and blades. The steam from the boiler passes through the first nozzle ring, where its pressure drops and velocity increases. [2]

  7. Turbine - Wikipedia

    en.wikipedia.org/wiki/Turbine

    A steam turbine with the case opened Humming of a small pneumatic turbine used in a German 1940s-vintage safety lamp. A turbine (/ ˈ t ɜːr b aɪ n / or / ˈ t ɜːr b ɪ n /) (from the Greek τύρβη, tyrbē, or Latin turbo, meaning vortex) [1] [2] is a rotary mechanical device that extracts energy from a fluid flow and converts it into useful work.

  8. Axial turbine - Wikipedia

    en.wikipedia.org/wiki/Axial_turbine

    Efficiencies of the turbine stages can also be plotted against this ratio. Such plots for some impulse and reaction stages are shown in the figure. The performance of steam turbines is often presented in this form. The curves in Figure also show the optimum values of the velocity ratio and the range of off-design for various types of stages.

  9. Turbomachinery - Wikipedia

    en.wikipedia.org/wiki/Turbomachinery

    Practical hydroelectric water turbines and steam turbines did not appear until the 1880s. Gas turbines appeared in the 1930s. The first impulse type turbine was created by Carl Gustaf de Laval in 1883. This was closely followed by the first practical reaction type turbine in 1884, built by Charles Parsons.