enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gaussian integral - Wikipedia

    en.wikipedia.org/wiki/Gaussian_integral

    A different technique, which goes back to Laplace (1812), [3] is the following. Let = =. Since the limits on s as y → ±∞ depend on the sign of x, it simplifies the calculation to use the fact that e −x 2 is an even function, and, therefore, the integral over all real numbers is just twice the integral from zero to infinity.

  3. Gaussian quadrature - Wikipedia

    en.wikipedia.org/wiki/Gaussian_quadrature

    As the integrand is the third-degree polynomial y(x) = 7x 3 – 8x 2 – 3x + 3, the 2-point Gaussian quadrature rule even returns an exact result. In numerical analysis , an n -point Gaussian quadrature rule , named after Carl Friedrich Gauss , [ 1 ] is a quadrature rule constructed to yield an exact result for polynomials of degree 2 n − 1 ...

  4. List of integrals of Gaussian functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    List of integrals of Gaussian functions. ... Download as PDF; Printable version; In other projects ... Mobile view; Search.

  5. Common integrals in quantum field theory - Wikipedia

    en.wikipedia.org/wiki/Common_integrals_in...

    The angular integration of an exponential in cylindrical coordinates can be written in terms of Bessel functions of the first kind [4] [5]: 113 ⁡ (⁡ ()) = and ⁡ ⁡ (⁡ ()) = (). For applications of these integrals see Magnetic interaction between current loops in a simple plasma or electron gas .

  6. Gauss–Kronrod quadrature formula - Wikipedia

    en.wikipedia.org/wiki/Gauss–Kronrod_quadrature...

    If the interval [a, b] is subdivided, the Gauss evaluation points of the new subintervals never coincide with the previous evaluation points (except at the midpoint for odd numbers of evaluation points), and thus the integrand must be evaluated at every point. Gauss–Kronrod formulas are extensions of the Gauss quadrature formulas generated by ...

  7. Gauss–Legendre quadrature - Wikipedia

    en.wikipedia.org/wiki/Gauss–Legendre_quadrature

    For integrating f over [,] with Gauss–Legendre quadrature, the associated orthogonal polynomials are Legendre polynomials, denoted by P n (x). With the n-th polynomial normalized so that P n (1) = 1, the i-th Gauss node, x i, is the i-th root of P n and the weights are given by the formula [5]

  8. Gaussian function - Wikipedia

    en.wikipedia.org/wiki/Gaussian_function

    Consequently, Gaussian functions are also associated with the vacuum state in quantum field theory. Gaussian beams are used in optical systems, microwave systems and lasers. In scale space representation, Gaussian functions are used as smoothing kernels for generating multi-scale representations in computer vision and image processing.

  9. Gauss–Jacobi quadrature - Wikipedia

    en.wikipedia.org/wiki/Gauss–Jacobi_quadrature

    Thus, Gauss–Jacobi quadrature can be used to approximate integrals with singularities at the end points. Gauss–Legendre quadrature is a special case of Gauss–Jacobi quadrature with α = β = 0. Similarly, the Chebyshev–Gauss quadrature of the first (second) kind arises when one takes α = β = −0.5 (+0.5).