enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Human physiology of underwater diving - Wikipedia

    en.wikipedia.org/wiki/Human_physiology_of...

    Clinical hypothermia occurs when the core temperature drops below 35 °C (95 °F). [21] Heat loss is a major limitation to swimming or diving in cold water. [8] The reduction in finger dexterity due to pain or numbness decreases general safety and work capacity, which consequently increases the risk of other injuries.

  3. Physiology of decompression - Wikipedia

    en.wikipedia.org/wiki/Physiology_of_decompression

    Blood flow to skin and fat are affected by skin and core temperature, and resting muscle perfusion is controlled by the temperature of the muscle itself. During exercise increased flow to the working muscles is often balanced by reduced flow to other tissues, such as kidneys, spleen, and liver.

  4. Thermal balance of the underwater diver - Wikipedia

    en.wikipedia.org/wiki/Thermal_balance_of_the...

    The opposite condition, when body temperature decreases below normal levels, is known as hypothermia. It occurs when the body loses heat faster than producing it. The core temperature of the body normally remains steady at around 36.5–37.5 °C (97.7–99.5 °F).

  5. Decompression theory - Wikipedia

    en.wikipedia.org/wiki/Decompression_theory

    Blood flow to skin and fat are affected by skin and core temperature, and resting muscle perfusion is controlled by the temperature of the muscle itself. During exercise increased flow to the working muscles is often balanced by reduced flow to other tissues, such as kidneys spleen and liver. [ 33 ]

  6. Perspiration - Wikipedia

    en.wikipedia.org/wiki/Perspiration

    Sweating causes a decrease in core temperature through evaporative cooling at the skin surface. As high energy molecules evaporate from the skin, releasing energy absorbed from the body, the skin and superficial vessels decrease in temperature. Cooled venous blood then returns to the body's core and counteracts rising core temperatures.

  7. Thermal neutral zone - Wikipedia

    en.wikipedia.org/wiki/Thermal_neutral_zone

    Conversely, we are normally in surroundings that are considerably cooler than the body's core temperature of 37 °C (98.6 °F) creating a gradient for thermal energy flow from the core to the surroundings. Therefore, the body must ensure it can also minimize the loss of heat to around 100 watts, if it is to maintain core temperature.

  8. Human thermoregulation - Wikipedia

    en.wikipedia.org/wiki/Human_thermoregulation

    Simplified control circuit of human thermoregulation. [8]The core temperature of a human is regulated and stabilized primarily by the hypothalamus, a region of the brain linking the endocrine system to the nervous system, [9] and more specifically by the anterior hypothalamic nucleus and the adjacent preoptic area regions of the hypothalamus.

  9. Ventilation–perfusion coupling - Wikipedia

    en.wikipedia.org/wiki/Ventilation–perfusion...

    Ventilation–perfusion coupling is the relationship between ventilation and perfusion in the respiratory and cardiovascular systems. [1] Ventilation is the movement of air in and out of the lungs during breathing. [2] Perfusion is the process of pulmonary blood circulation, which reoxygenates blood, allowing it to transport oxygen to body tissues.