enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]

  3. Euler–Rodrigues formula - Wikipedia

    en.wikipedia.org/wiki/Euler–Rodrigues_formula

    The composition of two rotations is itself a rotation. Let (a 1, b 1, c 1, d 1) and (a 2, b 2, c 2, d 2) be the Euler parameters of two rotations. The parameters for the compound rotation (rotation 2 after rotation 1) are as follows:

  4. Quaternion - Wikipedia

    en.wikipedia.org/wiki/Quaternion

    The real quaternion 1 is the identity element. The real quaternions commute with all other quaternions, that is aq = qa for every quaternion q and every real quaternion a. In algebraic terminology this is to say that the field of real quaternions are the center of this quaternion algebra.

  5. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    The rotation group is a Lie group of rotations about a fixed point. This (common) fixed point or center is called the center of rotation and is usually identified with the origin. The rotation group is a point stabilizer in a broader group of (orientation-preserving) motions. For a particular rotation: The axis of rotation is a line of its ...

  6. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    Rotations are not commutative (for example, rotating R 90° in the x-y plane followed by S 90° in the y-z plane is not the same as S followed by R), making the 3D rotation group a nonabelian group. Moreover, the rotation group has a natural structure as a manifold for which the group operations are smoothly differentiable, so it is in fact a ...

  7. Conversion between quaternions and Euler angles - Wikipedia

    en.wikipedia.org/wiki/Conversion_between...

    A quaternion has 4 real values: q w (the real part or the scalar part) and q x q y q z (the imaginary part). Defining the norm of the quaternion as follows: ‖ ‖ = + + + A unit quaternion satisfies: ‖ ‖ =

  8. Quaternionic analysis - Wikipedia

    en.wikipedia.org/wiki/Quaternionic_analysis

    Such functions can be called functions of a quaternion variable just as functions of a real variable or a complex variable are called. As with complex and real analysis , it is possible to study the concepts of analyticity , holomorphy , harmonicity and conformality in the context of quaternions.

  9. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    Rotation formalisms are focused on proper (orientation-preserving) motions of the Euclidean space with one fixed point, that a rotation refers to.Although physical motions with a fixed point are an important case (such as ones described in the center-of-mass frame, or motions of a joint), this approach creates a knowledge about all motions.