Search results
Results from the WOW.Com Content Network
De Morgan's laws represented with Venn diagrams.In each case, the resultant set is the set of all points in any shade of blue. In propositional logic and Boolean algebra, De Morgan's laws, [1] [2] [3] also known as De Morgan's theorem, [4] are a pair of transformation rules that are both valid rules of inference.
(i.e. an involution that additionally satisfies De Morgan's laws) In a De Morgan algebra, the laws ¬x ∨ x = 1 (law of the excluded middle), and; ¬x ∧ x = 0 (law of noncontradiction) do not always hold. In the presence of the De Morgan laws, either law implies the other, and an algebra which satisfies them becomes a Boolean algebra.
The principle of inclusion–exclusion, combined with De Morgan's law, can be used to count the cardinality of the intersection of sets as well. Let A k ¯ {\displaystyle {\overline {A_{k}}}} represent the complement of A k with respect to some universal set A such that A k ⊆ A {\displaystyle A_{k}\subseteq A} for each k .
The De Morgan dual is the canonical conjunctive normal form , maxterm canonical form, or Product of Sums (PoS or POS) which is a conjunction (AND) of maxterms. These forms can be useful for the simplification of Boolean functions, which is of great importance in the optimization of Boolean formulas in general and digital circuits in particular.
In logic, a rule of replacement [1] [2] [3] is a transformation rule that may be applied to only a particular segment of an expression.A logical system may be constructed so that it uses either axioms, rules of inference, or both as transformation rules for logical expressions in the system.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Upgrade to a faster, more secure version of a supported browser. It's free and it only takes a few moments:
Download as PDF; Printable version; ... From Wikipedia, the free encyclopedia. Redirect page. Redirect to: De Morgan's laws#Generalising De Morgan duality;