Ads
related to: removable v non discontinuities in math equations practice
Search results
Results from the WOW.Com Content Network
The function in example 1, a removable discontinuity. Consider the piecewise function = {< = >. The point = is a removable discontinuity.For this kind of discontinuity: The one-sided limit from the negative direction: = and the one-sided limit from the positive direction: + = + at both exist, are finite, and are equal to = = +.
A graph of a parabola with a removable singularity at x = 2 In complex analysis , a removable singularity of a holomorphic function is a point at which the function is undefined , but it is possible to redefine the function at that point in such a way that the resulting function is regular in a neighbourhood of that point.
A simple but very useful consequence of L'Hopital's rule is that the derivative of a function cannot have a removable discontinuity. That is, suppose that f is continuous at a , and that f ′ ( x ) {\displaystyle f'(x)} exists for all x in some open interval containing a , except perhaps for x = a {\displaystyle x=a} .
The derivative at a non-essential singularity itself has a non-essential singularity, with increased by 1 (except if is 0 so that the singularity is removable). The point a {\displaystyle a} is an essential singularity of f {\displaystyle f} if it is neither a removable singularity nor a pole.
Because of the order of zeros and poles being defined as a non-negative number n and the symmetry between them, it is often useful to consider a pole of order n as a zero of order –n and a zero of order n as a pole of order –n. In this case a point that is neither a pole nor a zero is viewed as a pole (or zero) of order 0.
7 Ambiguous wording about removable singularities and removable discontinuities. 2 comments. Toggle the table of contents ...
Ads
related to: removable v non discontinuities in math equations practice