enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Thermodynamic diagrams - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_diagrams

    The main feature of thermodynamic diagrams is the equivalence between the area in the diagram and energy. When air changes pressure and temperature during a process and prescribes a closed curve within the diagram the area enclosed by this curve is proportional to the energy which has been gained or released by the air.

  3. Temperature - Wikipedia

    en.wikipedia.org/wiki/Temperature

    Temperature determines the statistical occupation of the microstates of the ensemble. The microscopic definition of temperature is only meaningful in the thermodynamic limit, meaning for large ensembles of states or particles, to fulfill the requirements of the statistical model. Kinetic energy is also considered as a component of thermal energy.

  4. Temperature–entropy diagram - Wikipedia

    en.wikipedia.org/wiki/Temperature–entropy_diagram

    In thermodynamics, a temperature–entropy (T–s) diagram is a thermodynamic diagram used to visualize changes to temperature (T ) and specific entropy (s) during a thermodynamic process or cycle as the graph of a curve. It is a useful and common tool, particularly because it helps to visualize the heat transfer during a process.

  5. Thermodynamic temperature - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_temperature

    Thermodynamic temperature is a quantity defined in thermodynamics as distinct from kinetic theory or statistical mechanics.. Historically, thermodynamic temperature was defined by Lord Kelvin in terms of a macroscopic relation between thermodynamic work and heat transfer as defined in thermodynamics, but the kelvin was redefined by international agreement in 2019 in terms of phenomena that are ...

  6. Entropy (classical thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(classical...

    Figure 1. A thermodynamic model system. Differences in pressure, density, and temperature of a thermodynamic system tend to equalize over time. For example, in a room containing a glass of melting ice, the difference in temperature between the warm room and the cold glass of ice and water is equalized by energy flowing as heat from the room to the cooler ice and water mixture.

  7. Phase diagram - Wikipedia

    en.wikipedia.org/wiki/Phase_diagram

    The pressure on a pressure-temperature diagram (such as the water phase diagram shown above) is the partial pressure of the substance in question. A phase diagram in physical chemistry , engineering , mineralogy , and materials science is a type of chart used to show conditions (pressure, temperature, etc.) at which thermodynamically distinct ...

  8. Second law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Second_law_of_thermodynamics

    The second law of thermodynamics is a physical law based on universal empirical observation concerning heat and energy interconversions.A simple statement of the law is that heat always flows spontaneously from hotter to colder regions of matter (or 'downhill' in terms of the temperature gradient).

  9. First law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/First_law_of_thermodynamics

    In 1907, George H. Bryan wrote about systems between which there is no transfer of matter (closed systems): "Definition. When energy flows from one system or part of a system to another otherwise than by the performance of mechanical work, the energy so transferred is called heat."