enow.com Web Search

  1. Ad

    related to: how to factorize a polynomial equation with given values
  2. wyzant.com has been visited by 10K+ users in the past month

    • Find a Tutor

      Find Affordable Tutors at Wyzant.

      1-on-1 Sessions From $25/hr.

    • Tutors Near You

      Expert Tutors, Private Sessions.

      Tutors From $25/hr. Try Today.

Search results

  1. Results from the WOW.Com Content Network
  2. Factorization of polynomials - Wikipedia

    en.wikipedia.org/wiki/Factorization_of_polynomials

    For univariate polynomials over the rationals (or more generally over a field of characteristic zero), Yun's algorithm exploits this to efficiently factorize the polynomial into square-free factors, that is, factors that are not a multiple of a square, performing a sequence of GCD computations starting with gcd(f(x), f '(x)). To factorize the ...

  3. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    The number of irreducible monic polynomials of degree n over F q is the number of aperiodic necklaces, given by Moreau's necklace-counting function M q (n). The closely related necklace function N q (n) counts monic polynomials of degree n which are primary (a power of an irreducible); or alternatively irreducible polynomials of all degrees d ...

  4. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    In elementary algebra, factoring a polynomial reduces the problem of finding its roots to finding the roots of the factors. Polynomials with coefficients in the integers or in a field possess the unique factorization property, a version of the fundamental theorem of arithmetic with prime numbers replaced by irreducible polynomials.

  5. Complex conjugate root theorem - Wikipedia

    en.wikipedia.org/wiki/Complex_conjugate_root_theorem

    The polynomial x 2 + 1 = 0 has roots ± i. Any real square matrix of odd degree has at least one real eigenvalue. For example, if the matrix is orthogonal, then 1 or −1 is an eigenvalue. The polynomial + has roots , +,, and thus can be factored as

  6. Berlekamp's algorithm - Wikipedia

    en.wikipedia.org/wiki/Berlekamp's_algorithm

    That is, we note that ([] / (())) is a -subspace, and an explicit basis for it can be calculated in the polynomial ring [,] / (,) by computing () and establishing the linear equations on the coefficients of , polynomials that are satisfied iff it is fixed by Frobenius. We note that at this point we have an efficiently computable irreducibility ...

  7. Non-negative matrix factorization - Wikipedia

    en.wikipedia.org/wiki/Non-negative_matrix...

    A polynomial time algorithm for solving nonnegative rank factorization if V contains a monomial sub matrix of rank equal to its rank was given by Campbell and Poole in 1981. [40] Kalofolias and Gallopoulos (2012) [ 41 ] solved the symmetric counterpart of this problem, where V is symmetric and contains a diagonal principal sub matrix of rank r.

  8. Ruffini's rule - Wikipedia

    en.wikipedia.org/wiki/Ruffini's_rule

    Ruffini's rule can be used when one needs the quotient of a polynomial P by a binomial of the form . (When one needs only the remainder, the polynomial remainder theorem provides a simpler method.) A typical example, where one needs the quotient, is the factorization of a polynomial p ( x ) {\displaystyle p(x)} for which one knows a root r :

  9. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    Applicable to: square, hermitian, positive definite matrix Decomposition: =, where is upper triangular with real positive diagonal entries Comment: if the matrix is Hermitian and positive semi-definite, then it has a decomposition of the form = if the diagonal entries of are allowed to be zero

  1. Ad

    related to: how to factorize a polynomial equation with given values