Search results
Results from the WOW.Com Content Network
Affinity chromatography can be used in a number of applications, including nucleic acid purification, protein purification [9] from cell free extracts, and purification from blood. By using affinity chromatography, one can separate proteins that bind to a certain fragment from proteins that do not bind that specific fragment. [10]
In chemical physics and physical chemistry, chemical affinity is the electronic property by which dissimilar chemical species are capable of forming chemical compounds. [1] Chemical affinity can also refer to the tendency of an atom or compound to combine by chemical reaction with atoms or compounds of unlike composition.
If the mobile phase contains solvents with a higher proton affinity than water, proton-transfer reactions take place that lead to protonated the solvent with higher proton affinity. For example, when methanol solvent is present, the cluster solvent ions would be CH 3 OH 2 + (H 2 O) n (CH 3 OH) m. [2] Fragmentation does not normally occur inside ...
Periodic counter-current chromatography (PCC) is a method for running affinity chromatography in a quasi-continuous manner. Today, the process is mainly employed for the purification of antibodies in the biopharmaceutical industry [1] as well as in research and development. When purifying antibodies, protein A is used as affinity matrix ...
Proton-transfer-reaction mass spectrometry (PTR-MS) is an analytical chemistry technique that uses gas phase hydronium reagent ions which are produced in an ion source. [1] PTR-MS is used for online monitoring of volatile organic compounds (VOCs) in ambient air and was developed in 1995 by scientists at the Institut für Ionenphysik at the ...
Dye-ligand affinity chromatography is one of the Affinity chromatography techniques used for protein purification of a complex mixture. Like general chromatography, but using dyes to apply on a support matrix of a column as the stationary phase that will allow a range of proteins with similar active sites to bind to, refers to as pseudo-affinity.
These properties include pathways within the column, diffusion (axial and longitudinal), and mass transfer kinetics between stationary and mobile phases. In liquid chromatography, the mobile phase velocity is taken as the exit velocity, that is, the ratio of the flow rate in ml/second to the cross-sectional area of the ‘column-exit flow path.’
For enzymes and other ligand-binding proteins, one-dimensional electrophoresis similar to counter electrophoresis or to "rocket immunoelectrophoresis", affinity electrophoresis may be used as an alternative quantification of the protein. [8] Some of the methods are similar to affinity chromatography by use of immobilized ligands.