enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    The sum of the entries along the main diagonal (the trace), plus one, equals 44(x 2 + y 2 + z 2), which is 4w 2. Thus we can write the trace itself as 2w 2 + 2w 2 − 1; and from the previous version of the matrix we see that the diagonal entries themselves have the same form: 2x 2 + 2w 2 − 1, 2y 2 + 2w 2 − 1, and 2z 2 + 2w 2 − 1. So ...

  3. Simulink - Wikipedia

    en.wikipedia.org/wiki/Simulink

    Simulink is a MATLAB-based graphical programming environment for modeling, simulating and analyzing multidomain dynamical systems. Its primary interface is a graphical block diagramming tool and a customizable set of block libraries .

  4. Rodrigues' rotation formula - Wikipedia

    en.wikipedia.org/wiki/Rodrigues'_rotation_formula

    is the rotation matrix through an angle θ counterclockwise about the axis k, and I the 3 × 3 identity matrix. [4] This matrix R is an element of the rotation group SO(3) of ℝ 3 , and K is an element of the Lie algebra s o ( 3 ) {\displaystyle {\mathfrak {so}}(3)} generating that Lie group (note that K is skew-symmetric, which characterizes ...

  5. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    The rotation is acting to rotate an object counterclockwise through an angle θ about the origin; see below for details. Composition of rotations sums their angles modulo 1 turn, which implies that all two-dimensional rotations about the same point commute. Rotations about different points, in general, do not commute.

  6. Rotations in 4-dimensional Euclidean space - Wikipedia

    en.wikipedia.org/wiki/Rotations_in_4-dimensional...

    The 5D rotation group SO(5) and all higher rotation groups contain subgroups isomorphic to O(4). Like SO(4), all even-dimensional rotation groups contain isoclinic rotations. But unlike SO(4), in SO(6) and all higher even-dimensional rotation groups any two isoclinic rotations through the same angle are conjugate.

  7. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]

  8. Plane of rotation - Wikipedia

    en.wikipedia.org/wiki/Plane_of_rotation

    The sense of the rotation is to rotate from m towards n: the geometric product is not commutative so the product nm is the inverse rotation, with sense from n to m. Conversely all simple rotations can be generated this way, with two reflections, by two unit vectors in the plane of rotation separated by half the desired angle of rotation.

  9. Conversion between quaternions and Euler angles - Wikipedia

    en.wikipedia.org/wiki/Conversion_between...

    Spatial rotations in three dimensions can be parametrized using both Euler angles and unit quaternions.This article explains how to convert between the two representations. Actually this simple use of "quaternions" was first presented by Euler some seventy years earlier than Hamilton to solve the problem of magic squar