enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Division algorithm - Wikipedia

    en.wikipedia.org/wiki/Division_algorithm

    Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.

  3. Euclidean division - Wikipedia

    en.wikipedia.org/wiki/Euclidean_division

    The theorem is frequently referred to as the division algorithm (although it is a theorem and not an algorithm), because its proof as given below lends itself to a simple division algorithm for computing q and r (see the section Proof for more). Division is not defined in the case where b = 0; see division by zero.

  4. Long division - Wikipedia

    en.wikipedia.org/wiki/Long_division

    In arithmetic, long division is a standard division algorithm suitable for dividing multi-digit Hindu-Arabic numerals (positional notation) that is simple enough to perform by hand. It breaks down a division problem into a series of easier steps.

  5. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    In mathematics, the Euclidean algorithm, [note 1] or Euclid's algorithm, is an efficient method for computing the greatest common divisor (GCD) of two integers, the largest number that divides them both without a remainder. It is named after the ancient Greek mathematician Euclid, who first described it in his Elements (c. 300 BC).

  6. Polynomial long division - Wikipedia

    en.wikipedia.org/wiki/Polynomial_long_division

    Another abbreviated method is polynomial short division (Blomqvist's method). Polynomial long division is an algorithm that implements the Euclidean division of polynomials, which starting from two polynomials A (the dividend) and B (the divisor) produces, if B is not zero, a quotient Q and a remainder R such that A = BQ + R,

  7. How does the Proof of Authority algorithm work? - AOL

    www.aol.com/news/does-proof-authority-algorithm...

    The Proof of Authority (PoA) consensus is similar to both the Proof of Work (PoW) and Proof of Stake (POS) algorithms. It combines a certain level of decentralisation with efficiency in a new ...

  8. Extended Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Extended_Euclidean_algorithm

    if s = 0 then output "Division by zero" if s < 0 then s := −s; t := −t (for avoiding negative denominators) if s = 1 then output-t (for avoiding denominators equal to 1) output ⁠-t / s ⁠ The proof of this algorithm relies on the fact that s and t are two coprime integers such that as + bt = 0, and thus =. To get the canonical simplified ...

  9. Ruffini's rule - Wikipedia

    en.wikipedia.org/wiki/Ruffini's_rule

    In mathematics, Ruffini's rule is a method for computation of the Euclidean division of a polynomial by a binomial of the form x – r. It was described by Paolo Ruffini in 1809. [1] The rule is a special case of synthetic division in which the divisor is a linear factor.