Search results
Results from the WOW.Com Content Network
The cardinality or "size" of a multiset is the sum of the multiplicities of all its elements. For example, in the multiset {a, a, b, b, b, c} the multiplicities of the members a, b, and c are respectively 2, 3, and 1, and therefore the cardinality of this multiset is 6.
In some cases a multiset in this counting sense may be generalized to allow negative values, as in Python. C++'s Standard Template Library implements both sorted and unsorted multisets. It provides the multiset class for the sorted multiset, as a kind of associative container, which implements this multiset using a self-balancing binary search ...
Max-sum MSSP: for each subset j in 1,...,m, there is a capacity C j. The goal is to make the sum of all subsets as large as possible, such that the sum in each subset j is at most C j. [1] Max-min MSSP (also called bottleneck MSSP or BMSSP): again each subset has a capacity, but now the goal is to make the smallest subset sum as large as ...
where is the multiset for which () =, and μ(S) = 1 if S is a set (i.e. a multiset without double elements) of even cardinality. μ(S) = −1 if S is a set (i.e. a multiset without double elements) of odd cardinality. μ(S) = 0 if S is a proper multiset (i.e. S has double elements).
HyperLogLog is an algorithm for the count-distinct problem, approximating the number of distinct elements in a multiset. [1] Calculating the exact cardinality of the distinct elements of a multiset requires an amount of memory proportional to the cardinality, which is impractical for very large data sets. Probabilistic cardinality estimators ...
A binary block code consists of a set of codewords, each of which is a string of 0s and 1s, all the same length. When each pair of codewords has large Hamming distance, it can be used as an error-correcting code. A block code can also be described as a family of sets, by describing each codeword as the set of positions at which it contains a 1.
The ABC-partition problem (also called numerical 3-d matching) is a variant in which, instead of a set S with 3 m integers, there are three sets A, B, C with m integers in each. The sum of numbers in all sets is m T {\displaystyle mT} .
Equal-cardinality partition is a variant in which both parts should have an equal number of items, in addition to having an equal sum. This variant is NP-hard too. [5]: SP12 Proof. Given a standard Partition instance with some n numbers, construct an Equal-Cardinality-Partition instance by adding n zeros. Clearly, the new instance has an equal ...