Search results
Results from the WOW.Com Content Network
The phenomenon of irreversibility results from the fact that if a thermodynamic system, which is any system of sufficient complexity, of interacting molecules is brought from one thermodynamic state to another, the configuration or arrangement of the atoms and molecules in the system will change in a way that is not easily predictable.
In physics, Loschmidt's paradox (named for J.J. Loschmidt), also known as the reversibility paradox, irreversibility paradox, or Umkehreinwand (from German 'reversal objection'), [1] is the objection that it should not be possible to deduce an irreversible process from time-symmetric dynamics.
The ensemble interpretation is similar; it offers an interpretation of the wave function, but not for single particles. The consistent histories interpretation advertises itself as "Copenhagen done right". [88] More recently, interpretations inspired by quantum information theory like QBism [89] and relational quantum mechanics [90] have appeared.
An irreversible process degrades the performance of a thermodynamic system, designed to do work or produce cooling, and results in entropy production. The entropy generation during a reversible process is zero. Thus entropy production is a measure of the irreversibility and may be used to compare engineering processes and machines.
The definition of the Gibbs function is = + where H is the enthalpy defined by: = +. Taking differentials of each definition to find dH and dG, then using the fundamental thermodynamic relation (always true for reversible or irreversible processes): = where S is the entropy, V is volume, (minus sign due to reversibility, in which dU = 0: work other than pressure-volume may be done and is equal ...
The Crooks fluctuation theorem (CFT), sometimes known as the Crooks equation, [1] is an equation in statistical mechanics that relates the work done on a system during a non-equilibrium transformation to the free energy difference between the final and the initial state of the transformation.
In this way, microscopic reversibility was used to prove macroscopic irreversibility and convergence of ensembles of molecules to their thermodynamic equilibria. Another macroscopic consequence of microscopic reversibility is the symmetry of kinetic coefficients, the so-called reciprocal relations.
Thermodynamics is expressed by a mathematical framework of thermodynamic equations which relate various thermodynamic quantities and physical properties measured in a laboratory or production process. Thermodynamics is based on a fundamental set of postulates, that became the laws of thermodynamics.