enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of types of numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_types_of_numbers

    Prime number: A positive integer with exactly two positive divisors: itself and 1. The primes form an infinite sequence 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ... Composite number: A positive integer that can be factored into a product of smaller positive integers. Every integer greater than one is either prime or composite.

  3. List of integer sequences - Wikipedia

    en.wikipedia.org/wiki/List_of_integer_sequences

    A positive integer with more divisors than any smaller positive integer. A002182: Superior highly composite numbers: 2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, ... A positive integer n for which there is an e > 0 such that ⁠ d(n) / n e ⁠ ≥ ⁠ d(k) / k e ⁠ for all k > 1. A002201: Pronic numbers: 0, 2, 6, 12, 20, 30, 42, 56, 72 ...

  4. Goldbach's conjecture - Wikipedia

    en.wikipedia.org/wiki/Goldbach's_conjecture

    Goldbach's conjecture is one of the oldest and best-known unsolved problems in number theory and all of mathematics.It states that every even natural number greater than 2 is the sum of two prime numbers.

  5. Prime power - Wikipedia

    en.wikipedia.org/wiki/Prime_power

    Every prime power (except powers of 2 greater than 4) has a primitive root; thus the multiplicative group of integers modulo p n (that is, the group of units of the ring Z/p n Z) is cyclic. [ 1 ] The number of elements of a finite field is always a prime power and conversely, every prime power occurs as the number of elements in some finite ...

  6. Abundant number - Wikipedia

    en.wikipedia.org/wiki/Abundant_number

    An abundant number whose abundance is greater than any lower number is called a highly abundant number, and one whose relative abundance (i.e. s(n)/n ) is greater than any lower number is called a superabundant number; Every integer greater than 20161 can be written as the sum of two abundant numbers. The largest even number that is not the sum ...

  7. Table of divisors - Wikipedia

    en.wikipedia.org/wiki/Table_of_divisors

    a composite number has more than just 1 and itself as divisors; that is, d(n) > 2; a highly composite number has a number of positive divisors that is greater than any lesser number; that is, d(n) > d(m) for every positive integer m < n. Counterintuitively, the first two highly composite numbers are not composite numbers.

  8. List of prime numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_prime_numbers

    A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes.

  9. Bertrand's postulate - Wikipedia

    en.wikipedia.org/wiki/Bertrand's_postulate

    Sylvester (1814–1897) generalized the weaker statement with the statement: the product of k consecutive integers greater than k is divisible by a prime greater than k. Bertrand's (weaker) postulate follows from this by taking k = n , and considering the k numbers n + 1, n + 2, up to and including n + k = 2 n , where n > 1.