Search results
Results from the WOW.Com Content Network
The Kirchhoff–Helmholtz integral combines the Helmholtz equation with the Kirchhoff integral theorem [1] to produce a method applicable to acoustics, [2] seismology [3] and other disciplines involving wave propagation.
The Helmholtz equation has a variety of applications in physics and other sciences, including the wave equation, the diffusion equation, and the Schrödinger equation for a free particle. In optics, the Helmholtz equation is the wave equation for the electric field. [1] The equation is named after Hermann von Helmholtz, who studied it in 1860. [2]
The method of separation of variables is also used to solve a wide range of linear partial differential equations with boundary and initial conditions, such as the heat equation, wave equation, Laplace equation, Helmholtz equation and biharmonic equation. The analytical method of separation of variables for solving partial differential ...
Boundary element method (BEM) — based on transforming the PDE to an integral equation on the boundary of the domain Interval boundary element method — a version using interval arithmetics; Analytic element method — similar to the boundary element method, but the integral equation is evaluated analytically
Mathieu functions arise when separation of variables in elliptic coordinates is applied to 1) the Laplace equation in 3 dimensions, and 2) the Helmholtz equation in either 2 or 3 dimensions. Since the Helmholtz equation is a prototypical equation for modeling the spatial variation of classical waves, Mathieu functions can be used to describe a ...
Originally, the spheroidal wave functions were introduced by C. Niven, [21] which lead to a Helmholtz equation in spheroidal coordinates. Monographs tying together many aspects of the theory of spheroidal wave functions were written by Strutt, [ 22 ] Stratton et al., [ 23 ] Meixner and Schafke, [ 24 ] and Flammer.
The Sommerfeld radiation condition is used to solve uniquely the Helmholtz equation. For example, consider the problem of radiation due to a point source x 0 {\displaystyle x_{0}} in three dimensions, so the function f {\displaystyle f} in the Helmholtz equation is f ( x ) = δ ( x − x 0 ) , {\displaystyle f(x)=\delta (x-x_{0}),} where δ ...
The boundary element method (BEM) is a numerical computational method of solving linear partial differential equations which have been formulated as integral equations (i.e. in boundary integral form), including fluid mechanics, acoustics, electromagnetics (where the technique is known as method of moments or abbreviated as MoM), [1] fracture mechanics, [2] and contact mechanics.