enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kirchhoff–Helmholtz integral - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff–Helmholtz_integral

    The Kirchhoff–Helmholtz integral combines the Helmholtz equation with the Kirchhoff integral theorem [1] to produce a method applicable to acoustics, [2] seismology [3] and other disciplines involving wave propagation.

  3. Helmholtz equation - Wikipedia

    en.wikipedia.org/wiki/Helmholtz_equation

    The Helmholtz equation has a variety of applications in physics and other sciences, including the wave equation, the diffusion equation, and the Schrödinger equation for a free particle. In optics, the Helmholtz equation is the wave equation for the electric field. [1] The equation is named after Hermann von Helmholtz, who studied it in 1860. [2]

  4. Separation of variables - Wikipedia

    en.wikipedia.org/wiki/Separation_of_variables

    The method of separation of variables is also used to solve a wide range of linear partial differential equations with boundary and initial conditions, such as the heat equation, wave equation, Laplace equation, Helmholtz equation and biharmonic equation. The analytical method of separation of variables for solving partial differential ...

  5. List of numerical analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_analysis...

    Boundary element method (BEM) — based on transforming the PDE to an integral equation on the boundary of the domain Interval boundary element method — a version using interval arithmetics; Analytic element method — similar to the boundary element method, but the integral equation is evaluated analytically

  6. Mathieu function - Wikipedia

    en.wikipedia.org/wiki/Mathieu_function

    Mathieu functions arise when separation of variables in elliptic coordinates is applied to 1) the Laplace equation in 3 dimensions, and 2) the Helmholtz equation in either 2 or 3 dimensions. Since the Helmholtz equation is a prototypical equation for modeling the spatial variation of classical waves, Mathieu functions can be used to describe a ...

  7. Prolate spheroidal wave function - Wikipedia

    en.wikipedia.org/wiki/Prolate_spheroidal_wave...

    Originally, the spheroidal wave functions were introduced by C. Niven, [21] which lead to a Helmholtz equation in spheroidal coordinates. Monographs tying together many aspects of the theory of spheroidal wave functions were written by Strutt, [ 22 ] Stratton et al., [ 23 ] Meixner and Schafke, [ 24 ] and Flammer.

  8. Sommerfeld radiation condition - Wikipedia

    en.wikipedia.org/wiki/Sommerfeld_radiation_condition

    The Sommerfeld radiation condition is used to solve uniquely the Helmholtz equation. For example, consider the problem of radiation due to a point source x 0 {\displaystyle x_{0}} in three dimensions, so the function f {\displaystyle f} in the Helmholtz equation is f ( x ) = δ ( x − x 0 ) , {\displaystyle f(x)=\delta (x-x_{0}),} where δ ...

  9. Boundary element method - Wikipedia

    en.wikipedia.org/wiki/Boundary_element_method

    The boundary element method (BEM) is a numerical computational method of solving linear partial differential equations which have been formulated as integral equations (i.e. in boundary integral form), including fluid mechanics, acoustics, electromagnetics (where the technique is known as method of moments or abbreviated as MoM), [1] fracture mechanics, [2] and contact mechanics.