Search results
Results from the WOW.Com Content Network
This method is most useful when there are only two reactants. One reactant (A) is chosen, and the balanced chemical equation is used to determine the amount of the other reactant (B) necessary to react with A. If the amount of B actually present exceeds the amount required, then B is in excess and A is the limiting reagent.
r is the stoichiometric ratio of reactants, the excess reactant is conventionally the denominator so that r < 1. If neither monomer is in excess, then r = 1 and the equation reduces to the equimolar case above. The effect of the excess reactant is to reduce the degree of polymerization for a given value of p.
Stoichiometry is also used to find the right amount of one reactant to "completely" react with the other reactant in a chemical reaction – that is, the stoichiometric amounts that would result in no leftover reactants when the reaction takes place. An example is shown below using the thermite reaction, [citation needed] Fe 2 O 3 + 2 Al → Al ...
Conversion and its related terms yield and selectivity are important terms in chemical reaction engineering.They are described as ratios of how much of a reactant has reacted (X — conversion, normally between zero and one), how much of a desired product was formed (Y — yield, normally also between zero and one) and how much desired product was formed in ratio to the undesired product(s) (S ...
where denotes the number of moles of the reactant or product and is the stoichiometric number [4] of the reactant or product. Although less common, we see from this expression that since the stoichiometric number can either be considered to be dimensionless or to have units of moles, conversely the extent of reaction can either be considered to ...
A chemical equation is the symbolic representation of a chemical reaction in the form of symbols and chemical formulas.The reactant entities are given on the left-hand side and the product entities are on the right-hand side with a plus sign between the entities in both the reactants and the products, and an arrow that points towards the products to show the direction of the reaction. [1]
Here, a same-excess (e = 0.60 M) of [ArX] relative to [HNR 2] and [MOR] is utilized for each of the curves. As described above, same-excess experiments are conducted with two or more experiments holding the excess, (e) constant while changing the absolute concentrations of the substrates (in this case, the catalyst is also treated as a substrate.)
The stoichiometry of a chemical reaction is based on chemical formulas and equations that provide the quantitative relation between the number of moles of various products and reactants, including yields. [8] Stoichiometric equations are used to determine the limiting reagent or reactant—the reactant that is completely consumed in a reaction ...