Search results
Results from the WOW.Com Content Network
[1] [2] [3] Introduced by Gilbert N. Lewis in his 1916 article The Atom and the Molecule, a Lewis structure can be drawn for any covalently bonded molecule, as well as coordination compounds. [4] Lewis structures extend the concept of the electron dot diagram by adding lines between atoms to represent shared pairs in a chemical bond.
The most common Lewis bases are anions. The strength of Lewis basicity correlates with the pK a of the parent acid: acids with high pK a 's give good Lewis bases. As usual, a weaker acid has a stronger conjugate base. Examples of Lewis bases based on the general definition of electron pair donor include: simple anions, such as H − and F −
Carbonic acid is a chemical compound with the chemical formula H 2 C O 3.The molecule rapidly converts to water and carbon dioxide in the presence of water. However, in the absence of water, it is quite stable at room temperature.
The bond angle for a symmetric tetrahedral molecule such as CH 4 may be calculated using the dot product of two vectors. As shown in the diagram at left, the molecule can be inscribed in a cube with the tetravalent atom (e.g. carbon) at the cube centre which is the origin of coordinates, O. The four monovalent atoms (e.g. hydrogens) are at four ...
Lewis structures (or "Lewis dot structures") are flat graphical formulas that show atom connectivity and lone pair or unpaired electrons, but not three-dimensional structure. This notation is mostly used for small molecules. Each line represents the two electrons of a single bond. Two or three parallel lines between pairs of atoms represent ...
A carbonate is a salt of carbonic acid, (H 2 CO 3), [2] characterized by the presence of the carbonate ion, a polyatomic ion with the formula CO 2− 3.The word "carbonate" may also refer to a carbonate ester, an organic compound containing the carbonate group O=C(−O−) 2.
Gilbert Newton Lewis ForMemRS [1] (October 23 [2] [3] [4] or October 25, 1875 – March 23, 1946) [1] [5] [6] was an American physical chemist and a dean of the college of chemistry at University of California, Berkeley.
As with any buffer system, the pH is balanced by the presence of both a weak acid (for example, H 2 CO 3) and its conjugate base (for example, HCO − 3) so that any excess acid or base introduced to the system is neutralized.