Search results
Results from the WOW.Com Content Network
Pseudomathematics, or mathematical crankery, is a mathematics-like activity that does not adhere to the framework of rigor of formal mathematical practice. Common areas of pseudomathematics are solutions of problems proved to be unsolvable or recognized as extremely hard by experts, as well as attempts to apply mathematics to non-quantifiable ...
In mathematics, pseudoanalytic functions are functions introduced by Lipman Bers (1950, 1951, 1953, 1956) that generalize analytic functions and satisfy a weakened form of the Cauchy–Riemann equations.
This page was last edited on 4 November 2020, at 07:59 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
This page was last edited on 7 November 2024, at 09:13 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
On an eigenspace of the 4-momentum operator with 4-momentum eigenvalue of the Hilbert space of a quantum system (or for that matter the standard representation with ℝ 4 interpreted as momentum space acted on by 5×5 matrices with the upper left 4×4 block an ordinary Lorentz transformation, the last column reserved for translations and the ...
Primary pseudoperfect numbers were first investigated and named by Butske, Jaje, and Mayernik (2000). Using computational search techniques, they proved the remarkable result that for each positive integer r up to 8, there exists exactly one primary pseudoperfect number with precisely r (distinct) prime factors, namely, the rth known primary pseudoperfect number.
It can be shown that if is a pseudo-random number generator for the uniform distribution on (,) and if is the CDF of some given probability distribution , then is a pseudo-random number generator for , where : (,) is the percentile of , i.e. ():= {: ()}. Intuitively, an arbitrary distribution can be simulated from a simulation of the standard ...
In mathematics, a pseudogroup is a set of homeomorphisms between open sets of a space, satisfying group-like and sheaf-like properties. It is a generalisation [dubious – discuss] of the concept of a group, originating however from the geometric approach of Sophus Lie [1] to investigate symmetries of differential equations, rather than out of abstract algebra (such as quasigroup, for example).