Search results
Results from the WOW.Com Content Network
Rosetta Code is a wiki-based programming chrestomathy website with implementations of common algorithms and solutions to various programming problems in many different programming languages. [ 1 ] [ 2 ] It is named for the Rosetta Stone , which has the same text inscribed on it in three languages, and thus allowed Egyptian hieroglyphs to be ...
Does linear programming admit a strongly polynomial-time algorithm? (This is problem #9 in Smale's list of problems.) How many queries are required for envy-free cake-cutting? What is the algorithmic complexity of the minimum spanning tree problem? Equivalently, what is the decision tree complexity of the MST problem?
All loops must have fixed bounds. This prevents runaway code. Avoid heap memory allocation. Restrict functions to a single printed page. Use a minimum of two runtime assertions per function. Restrict the scope of data to the smallest possible. Check the return value of all non-void functions, or cast to void to indicate the return value is useless.
In the present example, the set of circles is a subset of the set of ellipses; circles can be defined as ellipses whose major and minor axes are the same length. Thus, code written in an object-oriented language that models shapes will frequently choose to make class Circle a subclass of class Ellipse, i.e. inheriting from it.
Such lower bound is called a "separation bound" since it separates between the difference and 0. For example, if the absolute difference is at least 2-d, it means that we can round all numbers to d bits of accuracy, and solve SRS in time polynomial in d. This leads to the mathematical problem of proving bounds on this difference.
The basic heuristic of shape analysis is that objects that are being used by the program are represented using unique materialized objects, while objects not in use are summarized. The array of objects in the example above is summarized in separate ways at lines [1], [2], and [3]. At line [1], the array has been only partly constructed.
Route inspection problem (also called Chinese postman problem) for mixed graphs (having both directed and undirected edges). The program is solvable in polynomial time if the graph has all undirected or all directed edges. Variants include the rural postman problem. [3]: ND25, ND27 Clique cover problem [2] [3]: GT17
function simple memory bounded A *-star (problem): path queue: set of nodes, ordered by f-cost; begin queue. insert (problem. root-node); while True do begin if queue. empty then return failure; //there is no solution that fits in the given memory node:= queue. begin (); // min-f-cost-node if problem. is-goal (node) then return success; s:= next-successor (node) if! problem. is-goal (s ...