Search results
Results from the WOW.Com Content Network
Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface.
One can measure a given property by either carrying out the measurement on a fixed point in space as particles of the fluid pass by, or by following a parcel of fluid along its streamline. The derivative of a field with respect to a fixed position in space is called the Eulerian derivative, while the derivative following a moving parcel is ...
Assuming conservation of mass, with the known properties of divergence and gradient we can use the mass continuity equation, which represents the mass per unit volume of a homogenous fluid with respect to space and time (i.e., material derivative) of any finite volume (V) to represent the change of velocity in fluid media ...
If correctly selected, it reaches terminal velocity, which can be measured by the time it takes to pass two marks on the tube. Electronic sensing can be used for opaque fluids. Knowing the terminal velocity, the size and density of the sphere, and the density of the liquid, Stokes' law can be used to calculate the viscosity of the fluid. A ...
Second derivatives of thermodynamic potentials generally describe the response of the system to small changes. The number of second derivatives which are independent of each other is relatively small, which means that most material properties can be described in terms of just a few "standard" properties.
For constant fluid density, the incompressible equations can be written as a quasilinear advection equation for the fluid velocity together with an elliptic Poisson's equation for the pressure. On the other hand, the compressible Euler equations form a quasilinear hyperbolic system of conservation equations .
Fluid mechanics is the branch of physics concerned with the mechanics of fluids (liquids, gases, and plasmas) and the forces on them. [1]: 3 It has applications in a wide range of disciplines, including mechanical, aerospace, civil, chemical, and biomedical engineering, as well as geophysics, oceanography, meteorology, astrophysics, and biology.
In fluid dynamics, Rayleigh's equation or Rayleigh stability equation is a linear ordinary differential equation to study the hydrodynamic stability of a parallel, incompressible and inviscid shear flow. The equation is: [1] (″) ″ =,