enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Particular values of the gamma function - Wikipedia

    en.wikipedia.org/wiki/Particular_values_of_the...

    The gamma function is an important special function in mathematics.Its particular values can be expressed in closed form for integer and half-integer arguments, but no simple expressions are known for the values at rational points in general.

  3. Gamma function - Wikipedia

    en.wikipedia.org/wiki/Gamma_function

    The gamma function then is defined in the complex plane as the analytic continuation of this integral function: it is a meromorphic function which is holomorphic except at zero and the negative integers, where it has simple poles. The gamma function has no zeros, so the reciprocal gamma function ⁠ 1 / Γ(z) ⁠ is an entire function.

  4. Gamma distribution - Wikipedia

    en.wikipedia.org/wiki/Gamma_distribution

    In probability theory and statistics, the gamma distribution is a ... family formula for the moment generating function of the ... based or table-based methods ...

  5. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    The Dirac delta function, although not strictly a probability distribution, is a limiting form of many continuous probability functions. It represents a discrete probability distribution concentrated at 0 — a degenerate distribution — it is a Distribution (mathematics) in the generalized function sense; but the notation treats it as if it ...

  6. Lanczos approximation - Wikipedia

    en.wikipedia.org/wiki/Lanczos_approximation

    Thus computing the gamma function becomes a matter of evaluating only a small number of elementary functions and multiplying by stored constants. The Lanczos approximation was popularized by Numerical Recipes , according to which computing the gamma function becomes "not much more difficult than other built-in functions that we take for granted ...

  7. Chowla–Selberg formula - Wikipedia

    en.wikipedia.org/wiki/Chowla–Selberg_formula

    This has led to much research and generalization. In particular there is an analog of the Chowla–Selberg formula for p-adic numbers, involving a p-adic gamma function, called the Gross–Koblitz formula. The Chowla–Selberg formula gives a formula for a finite product of values of the eta functions.

  8. Generalized gamma distribution - Wikipedia

    en.wikipedia.org/wiki/Generalized_gamma_distribution

    The quantile function can be found by noting that (;,,) = ((/)) where is the cumulative distribution function of the gamma distribution with parameters = / and =. The quantile function is then given by inverting F {\displaystyle F} using known relations about inverse of composite functions , yielding:

  9. Spouge's approximation - Wikipedia

    en.wikipedia.org/wiki/Spouge's_approximation

    In mathematics, Spouge's approximation is a formula for computing an approximation of the gamma function. It was named after John L. Spouge, who defined the formula in a 1994 paper. [1] The formula is a modification of Stirling's approximation, and has the form