Search results
Results from the WOW.Com Content Network
However, this gain is not without a downside. Large packets occupy a link for more time than a smaller packet, causing greater delays to subsequent packets, and increasing network delay and delay variation. For example, a 1500-byte packet, the largest allowed by Ethernet at the network layer, ties up a 14.4k modem for about one second.
A data unit at layer 2, the data link layer, is a frame. In layer 4, the transport layer, the data units are segments and datagrams. Thus, in the example of TCP/IP communication over Ethernet, a TCP segment is carried in one or more IP packets, which are each carried in one or more Ethernet frames.
This may require breaking large protocol data units or long data streams into smaller chunks called "segments", since the network layer imposes a maximum packet size called the maximum transmission unit (MTU), which depends on the maximum packet size imposed by all data link layers on the network path between the two hosts. The amount of data ...
The Layer 4: transport layer PDU is the segment or the datagram. The Layer 3: network layer PDU is the packet. The Layer 2: data link layer PDU is the frame. The Layer 1: physical layer PDU is the bit or, more generally, symbol. Given a context pertaining to a specific OSI layer, PDU is sometimes used as a synonym for its representation at that ...
In the OSI model of computer networking, a frame is the protocol data unit at the data link layer. Frames are the result of the final layer of encapsulation before the data is transmitted over the physical layer. [1] A frame is "the unit of transmission in a link layer protocol, and consists of a link layer header followed by a packet."
Within any network enabled device (e.g. router, switch, network element or terminal such as a computer or smartphone) it is the packet processing subsystem that manages the traversal of the multi-layered network or protocol stack from the lower, physical and network layers all the way through to the application layer.
The relative scalability of network data throughput as a function of packet transfer rates is related in a complex manner to payload size per packet. [17] Theoretically, as line bit rate increases, the packet payload size should increase in direct proportion to maintain equivalent timing parameters.
The ITU-T G.hn standard, which provides a way to create a high-speed (up to 1 Gigabit/s) Local area network using existing home wiring (power lines, phone lines and coaxial cables), is an example of a protocol that employs packet aggregation to increase efficiency.