enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Adjacency matrix - Wikipedia

    en.wikipedia.org/wiki/Adjacency_matrix

    The adjacency matrix of an undirected simple graph is symmetric, and therefore has a complete set of real eigenvalues and an orthogonal eigenvector basis. The set of eigenvalues of a graph is the spectrum of the graph. [ 7 ]

  3. Complete bipartite graph - Wikipedia

    en.wikipedia.org/wiki/Complete_bipartite_graph

    The complete bipartite graph K m,n has a vertex covering number of min{m, n} and an edge covering number of max{m, n}. The complete bipartite graph K m,n has a maximum independent set of size max{m, n}. The adjacency matrix of a complete bipartite graph K m,n has eigenvalues √ nm, − √ nm and 0; with multiplicity 1, 1 and n + m − 2 ...

  4. Seidel adjacency matrix - Wikipedia

    en.wikipedia.org/wiki/Seidel_adjacency_matrix

    The Seidel matrix of G is also the adjacency matrix of a signed complete graph K G in which the edges of G are negative and the edges not in G are positive. It is also the adjacency matrix of the two-graph associated with G and K G. The eigenvalue properties of the Seidel matrix are valuable in the study of strongly regular graphs.

  5. Graph (discrete mathematics) - Wikipedia

    en.wikipedia.org/wiki/Graph_(discrete_mathematics)

    The edges of a graph define a symmetric relation on the vertices, called the adjacency relation. Specifically, two vertices x and y are adjacent if {x, y} is an edge. A graph is fully determined by its adjacency matrix A, which is an n × n square matrix, with A ij specifying the number of connections from vertex i to vertex j.

  6. Spectral graph theory - Wikipedia

    en.wikipedia.org/wiki/Spectral_graph_theory

    The adjacency matrix of a simple undirected graph is a real symmetric matrix and is therefore orthogonally diagonalizable; its eigenvalues are real algebraic integers. While the adjacency matrix depends on the vertex labeling, its spectrum is a graph invariant , although not a complete one.

  7. Adjacency list - Wikipedia

    en.wikipedia.org/wiki/Adjacency_list

    An adjacency list representation for a graph associates each vertex in the graph with the collection of its neighbouring vertices or edges. There are many variations of this basic idea, differing in the details of how they implement the association between vertices and collections, in how they implement the collections, in whether they include both vertices and edges or only vertices as first ...

  8. Two-graph - Wikipedia

    en.wikipedia.org/wiki/Two-graph

    The adjacency matrix of a two-graph is the adjacency matrix of the corresponding signed complete graph; thus it is symmetric, is zero on the diagonal, and has entries ±1 off the diagonal. If G is the graph corresponding to the signed complete graph Σ, this matrix is called the (0, −1, 1)-adjacency matrix or Seidel adjacency matrix of G. The ...

  9. Bipartite graph - Wikipedia

    en.wikipedia.org/wiki/Bipartite_graph

    For, the adjacency matrix of a directed graph with n vertices can be any (0,1) matrix of size , which can then be reinterpreted as the adjacency matrix of a bipartite graph with n vertices on each side of its bipartition. [27] In this construction, the bipartite graph is the bipartite double cover of the directed graph.