enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Uncertainty quantification - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_quantification

    There are two major types of problems in uncertainty quantification: one is the forward propagation of uncertainty (where the various sources of uncertainty are propagated through the model to predict the overall uncertainty in the system response) and the other is the inverse assessment of model uncertainty and parameter uncertainty (where the ...

  3. Free energy principle - Wikipedia

    en.wikipedia.org/wiki/Free_energy_principle

    The free energy principle is a theoretical framework suggesting that the brain reduces surprise or uncertainty by making predictions based on internal models and updating them using sensory input. It highlights the brain's objective of aligning its internal model and the external world to enhance prediction accuracy.

  4. Limited-memory BFGS - Wikipedia

    en.wikipedia.org/wiki/Limited-memory_BFGS

    Due to its resulting linear memory requirement, the L-BFGS method is particularly well suited for optimization problems with many variables. Instead of the inverse Hessian H k, L-BFGS maintains a history of the past m updates of the position x and gradient ∇f(x), where generally the history size m can be small (often <).

  5. Modern Hopfield network - Wikipedia

    en.wikipedia.org/wiki/Modern_Hopfield_Network

    Model A reduces to the models studied in [3] [4] depending on the choice of the activation function, model B reduces to the model studied in, [1] model C reduces to the model of. [ 5 ] General systems of non-linear differential equations can have many complicated behaviors that can depend on the choice of the non-linearities and the initial ...

  6. Sensitivity analysis - Wikipedia

    en.wikipedia.org/wiki/Sensitivity_analysis

    Identify the model output to be analysed (the target of interest should ideally have a direct relation to the problem tackled by the model). Run the model a number of times using some design of experiments, [15] dictated by the method of choice and the input uncertainty. Using the resulting model outputs, calculate the sensitivity measures of ...

  7. Experimental uncertainty analysis - Wikipedia

    en.wikipedia.org/wiki/Experimental_uncertainty...

    The model used to convert the measurements into the derived quantity is usually based on fundamental principles of a science or engineering discipline. The uncertainty has two components, namely, bias (related to accuracy) and the unavoidable random variation that occurs when making repeated measurements (related to precision).

  8. Natural evolution strategy - Wikipedia

    en.wikipedia.org/wiki/Natural_Evolution_Strategy

    From the samples, NES estimates a search gradient on the parameters towards higher expected fitness. NES then performs a gradient ascent step along the natural gradient, a second order method which, unlike the plain gradient, renormalizes the update with respect to uncertainty. This step is crucial, since it prevents oscillations, premature ...

  9. Propagation of uncertainty - Wikipedia

    en.wikipedia.org/wiki/Propagation_of_uncertainty

    Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables ⁡ (+) = ⁡ + ⁡ + ⁡ (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...