Search results
Results from the WOW.Com Content Network
Other segments of DNA are transcribed into RNA molecules called non-coding RNAs (ncRNAs). Both DNA and RNA are nucleic acids, which use base pairs of nucleotides as a complementary language. During transcription, a DNA sequence is read by an RNA polymerase, which produces a complementary, antiparallel RNA strand called a primary transcript.
By convention, the coding strand is the strand used when displaying a DNA sequence. It is presented in the 5' to 3' direction. Wherever a gene exists on a DNA molecule, one strand is the coding strand (or sense strand), and the other is the noncoding strand (also called the antisense strand, [3] anticoding strand, template strand or transcribed ...
Within a gene, the sequence of bases along a DNA strand defines a messenger RNA sequence, which then defines one or more protein sequences. The relationship between the nucleotide sequences of genes and the amino-acid sequences of proteins is determined by the rules of translation , known collectively as the genetic code .
The code is read by copying stretches of DNA into the related nucleic acid RNA in a process called transcription. Within cells, DNA is organized into long sequences called chromosomes. During cell division these chromosomes are duplicated in the process of DNA replication, providing each cell its own complete set of chromosomes.
A typical operon. In genetics, an operon is a functioning unit of DNA containing a cluster of genes under the control of a single promoter. [1] The genes are transcribed together into an mRNA strand and either translated together in the cytoplasm, or undergo splicing to create monocistronic mRNAs that are translated separately, i.e. several strands of mRNA that each encode a single gene product.
The genetic code is the set of rules used by living cells to translate information encoded within genetic material (DNA or RNA sequences of nucleotide triplets or codons) into proteins. Translation is accomplished by the ribosome , which links proteinogenic amino acids in an order specified by messenger RNA (mRNA), using transfer RNA (tRNA ...
Gene structure is the organisation of specialised sequence elements within a gene.Genes contain most of the information necessary for living cells to survive and reproduce. [1] [2] In most organisms, genes are made of DNA, where the particular DNA sequence determines the function of the gene.
Sequence similarity based methods. They consist in the identification of homologous sequences with known DNA binding sites, or by aligning them with query proteins. Their performance is usually low because the DNA binding sequences are less conserved. Structure based methods. They employ the three-dimensional structural information of proteins ...