enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  3. Apache Spark - Wikipedia

    en.wikipedia.org/wiki/Apache_Spark

    Spark Core is the foundation of the overall project. It provides distributed task dispatching, scheduling, and basic I/O functionalities, exposed through an application programming interface (for Java, Python, Scala, .NET [16] and R) centered on the RDD abstraction (the Java API is available for other JVM languages, but is also usable for some other non-JVM languages that can connect to the ...

  4. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    Empirically, for machine learning heuristics, choices of a function that do not satisfy Mercer's condition may still perform reasonably if at least approximates the intuitive idea of similarity. [6] Regardless of whether k {\displaystyle k} is a Mercer kernel, k {\displaystyle k} may still be referred to as a "kernel".

  5. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]

  6. Reinforcement learning - Wikipedia

    en.wikipedia.org/wiki/Reinforcement_learning

    Reinforcement learning (RL) is an interdisciplinary area of machine learning and optimal control concerned with how an intelligent agent should take actions in a dynamic environment in order to maximize a reward signal. Reinforcement learning is one of the three basic machine learning paradigms, alongside supervised learning and unsupervised ...

  7. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    A specific recurrent architecture with rational-valued weights (as opposed to full precision real number-valued weights) has the power of a universal Turing machine, [212] using a finite number of neurons and standard linear connections. Further, the use of irrational values for weights results in a machine with super-Turing power.

  8. Deep reinforcement learning - Wikipedia

    en.wikipedia.org/wiki/Deep_reinforcement_learning

    Deep learning methods, often using supervised learning with labeled datasets, have been shown to solve tasks that involve handling complex, high-dimensional raw input data (such as images) with less manual feature engineering than prior methods, enabling significant progress in several fields including computer vision and natural language ...

  9. Machine learning in bioinformatics - Wikipedia

    en.wikipedia.org/wiki/Machine_learning_in...

    Machine learning in environmental metagenomics can help to answer questions related to the interactions between microbial communities and ecosystems, e.g. the work of Xun et al., in 2021 [50] where the use of different machine learning methods offered insights on the relationship among the soil, microbiome biodiversity, and ecosystem stability.