Search results
Results from the WOW.Com Content Network
Spark NLP for Healthcare is a commercial extension of Spark NLP for clinical and biomedical text mining. [10] It provides healthcare-specific annotators, pipelines, models, and embeddings for clinical entity recognition, clinical entity linking, entity normalization, assertion status detection, de-identification, relation extraction, and spell checking and correction.
Spark MLlib is a distributed machine-learning framework on top of Spark Core that, due in large part to the distributed memory-based Spark architecture, is as much as nine times as fast as the disk-based implementation used by Apache Mahout (according to benchmarks done by the MLlib developers against the alternating least squares (ALS ...
Small C++ core library C++, Python, Julia, MATLAB, ... Comparison of machine learning model compatibility. further explanation needed] Format name Design goal
Apache Mahout is a project of the Apache Software Foundation to produce free implementations of distributed or otherwise scalable machine learning algorithms focused primarily on linear algebra. In the past, many of the implementations use the Apache Hadoop platform, however today it is primarily focused on Apache Spark.
Data visualization libraries Plotly.js is an open-source JavaScript library for ... AI and machine learning charts: ML regression ... Databricks via PySpark ...
The Natural Language Toolkit, or more commonly NLTK, is a suite of libraries and programs for symbolic and statistical natural language processing (NLP) for English written in the Python programming language. It supports classification, tokenization, stemming, tagging, parsing, and semantic reasoning functionalities. [4]
The reasons for successful word embedding learning in the word2vec framework are poorly understood. Goldberg and Levy point out that the word2vec objective function causes words that occur in similar contexts to have similar embeddings (as measured by cosine similarity ) and note that this is in line with J. R. Firth's distributional hypothesis .
The library has been used for research in image recognition, machine learning, biology, genetics, aerospace engineering, environmental sciences and artificial intelligence. Notable publications that cite FANN include: Papa, J. P. (2009). "Supervised pattern classification based on optimum-path forest".