Search results
Results from the WOW.Com Content Network
Plasma etching can be isotropic, i.e., exhibiting a lateral undercut rate on a patterned surface approximately the same as its downward etch rate, or can be anisotropic, i.e., exhibiting a smaller lateral undercut rate than its downward etch rate. Such anisotropy is maximized in deep reactive ion etching (DRIE). The use of the term anisotropy ...
Deep reactive-ion etching (DRIE) is a special subclass of reactive-ion etching (RIE). It enables highly anisotropic etch process used to create deep penetration, steep-sided holes and trenches in wafers /substrates, typically with high aspect ratios .
Anisotropic etching techniques (such as deep reactive-ion etching) are used in microfabrication processes to create well defined microscopic features with a high aspect ratio. These features are commonly used in MEMS (microelectromechanical systems) and microfluidic devices, where the anisotropy of the features is needed to impart desired ...
Reactive-ion etching (RIE) is an etching technology used in microfabrication. RIE is a type of dry etching which has different characteristics than wet etching . RIE uses chemically reactive plasma to remove material deposited on wafers .
Hydrogen plasma etching also tends to leave a clean and chemically balanced surface, which is ideal for a number of applications. [5] Oxygen plasma etching can be used for anisotropic deep-etching of diamond nanostructures by application of high bias in inductively coupled plasma/reactive ion etching (ICP/RIE) reactor. [12]
Since MACE is an anisotropic etching method (etching takes place not in all spatial directions) a pre-defined metal pattern can be directly transferred into the silicon substrate. Another method of depositing metal particles or thin films is electroless plating of noble metals on the surface of silicon. Since the redox potentials of the redox ...
In etching, a liquid ("wet") or plasma ("dry") chemical agent removes the uppermost layer of the substrate in the areas that are not protected by photoresist. In semiconductor fabrication, dry etching techniques are generally used, as they can be made anisotropic, in order to avoid significant undercutting of the photoresist pattern. This is ...
Like surface micromachining, bulk micromachining can be performed with wet or dry etches, although the most common etch in silicon is the anisotropic wet etch. This etch takes advantage of the fact that silicon has a crystal structure, which means its atoms are all arranged periodically in lines and planes. Certain planes have weaker bonds and ...