Search results
Results from the WOW.Com Content Network
v. t. e. In atomic, molecular, and optical physics and quantum chemistry, the molecular Hamiltonian is the Hamiltonian operator representing the energy of the electrons and nuclei in a molecule. This operator and the associated Schrödinger equation play a central role in computational chemistry and physics for computing properties of molecules ...
The Hamiltonian of a system represents the total energy of the system; that is, the sum of the kinetic and potential energies of all particles associated with the system. . The Hamiltonian takes different forms and can be simplified in some cases by taking into account the concrete characteristics of the system under analysis, such as single or several particles in the system, interaction ...
The benzene molecule consists of 12 nuclei and 42 electrons. The Schrödinger equation, which must be solved to obtain the energy levels and wavefunction of this molecule, is a partial differential eigenvalue equation in the three-dimensional coordinates of the nuclei and electrons, giving 3 × 12 = 36 nuclear + 3 × 42 = 126 electronic = 162 variables for the wave function.
The Nilsson model is a nuclear shell model treating the atomic nucleus as a deformed sphere. In 1953, the first experimental examples were found of rotational bands in nuclei, with their energy levels following the same J (J+1) pattern of energies as in rotating molecules. Quantum mechanically, it is impossible to have a collective rotation of ...
Nuclear physics. Force (as multiples of 10 000 N) between two nucleons as a function of distance as computed from the Reid potential (1968). [1] The spins of the neutron and proton are aligned, and they are in the S angular momentum state. The attractive (negative) force has a maximum at a distance of about 1 fm with a force of about 25 000 N ...
In physics, Hamiltonian mechanics is a reformulation of Lagrangian mechanics that emerged in 1833. Introduced by Sir William Rowan Hamilton, [1] Hamiltonian mechanics replaces (generalized) velocities used in Lagrangian mechanics with (generalized) momenta. Both theories provide interpretations of classical mechanics and describe the same ...
The Morse potential, named after physicist Philip M. Morse, is a convenient interatomic interaction model for the potential energy of a diatomic molecule.It is a better approximation for the vibrational structure of the molecule than the quantum harmonic oscillator because it explicitly includes the effects of bond breaking, such as the existence of unbound states.
The Schrödinger equation for the electron in a hydrogen atom (or a hydrogen-like atom) is = where is the electron charge, is the position of the electron relative to the nucleus, = | | is the magnitude of the relative position, the potential term is due to the Coulomb interaction, wherein is the permittivity of free space and = + is the 2-body ...