Search results
Results from the WOW.Com Content Network
Throughout this article, boldfaced unsubscripted and are used to refer to random vectors, and Roman subscripted and are used to refer to scalar random variables.. If the entries in the column vector = (,, …,) are random variables, each with finite variance and expected value, then the covariance matrix is the matrix whose (,) entry is the covariance [1]: 177 ...
Simple cases, where observations are complete, can be dealt with by using the sample covariance matrix. The sample covariance matrix (SCM) is an unbiased and efficient estimator of the covariance matrix if the space of covariance matrices is viewed as an extrinsic convex cone in R p×p; however, measured using the intrinsic geometry of positive ...
The fundamental observation MUSIC and other subspace decomposition methods are based on is about the rank of the autocorrelation matrix which is related to number of signal sources as follows. If the sources are complex, then M > p {\displaystyle M>p} and the dimension of the signal subspace U S {\displaystyle {\mathcal {U}}_{S}} is p ...
With any number of random variables in excess of 1, the variables can be stacked into a random vector whose i th element is the i th random variable. Then the variances and covariances can be placed in a covariance matrix, in which the (i, j) element is the covariance between the i th random variable and the j th one.
The sample mean and the sample covariance matrix are unbiased estimates of the mean and the covariance matrix of the random vector, a vector whose jth element (=, …,) is one of the random variables.
Algorithms for calculating variance play a major role in computational statistics.A key difficulty in the design of good algorithms for this problem is that formulas for the variance may involve sums of squares, which can lead to numerical instability as well as to arithmetic overflow when dealing with large values.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
Computing this requires , the inverse of the covariance matrix which runs in () time (using the sample covariance matrix to obtain a sample partial correlation). Note that only a single matrix inversion is required to give all the partial correlations between pairs of variables in V {\displaystyle \mathbf {V} } .