Search results
Results from the WOW.Com Content Network
The tennis racket theorem or intermediate axis theorem, is a kinetic phenomenon of classical mechanics which describes the movement of a rigid body with three distinct principal moments of inertia. It has also been dubbed the Dzhanibekov effect , after Soviet cosmonaut Vladimir Dzhanibekov , who noticed one of the theorem's logical consequences ...
In 1985 he demonstrated stable and unstable rotation of a T-handle nut from the orbit, subsequently named the Dzhanibekov effect. The effect had been long known from the tennis racket theorem, which says that rotation about an object's intermediate principal axis is unstable while in free fall. In 1985 he was promoted to the rank of major ...
The following other wikis use this file: Usage on ar.wikipedia.org مبرهنة مضرب التنس; Usage on de.wikipedia.org Dschanibekow-Effekt
Let = + and ¯ = where and are real.. Let () = (,) + (,) be any holomorphic function.. Example 1: = (+) + Example 2: = + In his article, [1] Milne ...
The first Frenet-Serret formula holds by the definition of the normal N and the curvature κ, and the third Frenet-Serret formula holds by the definition of the torsion τ. Thus what is needed is to show the second Frenet-Serret formula. Since T, N, B are orthogonal unit vectors with B = T × N, one also has T = N × B and N = B × T.
In classical mechanics, Euler's rotation equations are a vectorial quasilinear first-order ordinary differential equation describing the rotation of a rigid body, using a rotating reference frame with angular velocity ω whose axes are fixed to the body.
Layer cake representation. In mathematics, the layer cake representation of a non-negative, real-valued measurable function defined on a measure space (,,) is the formula = (,) (),
A question has been raised about who gave the earliest statement of the Jarzynski equality. For example, in 1977 the Russian physicists G.N. Bochkov and Yu. E. Kuzovlev (see Bibliography) proposed a generalized version of the fluctuation-dissipation theorem which holds in the presence of arbitrary external time-dependent forces. Despite its ...