enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    The number of steps to calculate the GCD of two natural numbers, a and b, may be denoted by T(a, b). [96] If g is the GCD of a and b, then a = mg and b = ng for two coprime numbers m and n. Then T(a, b) = T(m, n) as may be seen by dividing all the steps in the Euclidean algorithm by g. [97]

  3. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    So, Euclid's method for computing the greatest common divisor of two positive integers consists of replacing the larger number with the difference of the numbers, and repeating this until the two numbers are equal: that is their greatest common divisor. For example, to compute gcd(48,18), one proceeds as follows:

  4. Lehmer's GCD algorithm - Wikipedia

    en.wikipedia.org/wiki/Lehmer's_GCD_algorithm

    Say we want to obtain the GCD of the two integers a and b. Let a ≥ b. If b contains only one digit (in the chosen base, say β = 1000 or β = 2 32), use some other method, such as the Euclidean algorithm, to obtain the result. If a and b differ in the length of digits, perform a division so that a and b are equal in length, with length equal ...

  5. Binary GCD algorithm - Wikipedia

    en.wikipedia.org/wiki/Binary_GCD_algorithm

    Visualisation of using the binary GCD algorithm to find the greatest common divisor (GCD) of 36 and 24. Thus, the GCD is 2 2 × 3 = 12.. The binary GCD algorithm, also known as Stein's algorithm or the binary Euclidean algorithm, [1] [2] is an algorithm that computes the greatest common divisor (GCD) of two nonnegative integers.

  6. Division algorithm - Wikipedia

    en.wikipedia.org/wiki/Division_algorithm

    Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.

  7. Jacobi symbol - Wikipedia

    en.wikipedia.org/wiki/Jacobi_symbol

    The above formulas lead to an efficient O(log a log b) [3] algorithm for calculating the Jacobi symbol, analogous to the Euclidean algorithm for finding the gcd of two numbers. (This should not be surprising in light of rule 2.) Reduce the "numerator" modulo the "denominator" using rule 2. Extract any even "numerator" using rule 9.

  8. Euclidean division - Wikipedia

    en.wikipedia.org/wiki/Euclidean_division

    Using Euclidean division, 9 divided by 4 is 2 with remainder 1. In other words, each person receives 2 slices of pie, and there is 1 slice left over. This can be confirmed using multiplication, the inverse of division: if each of the 4 people received 2 slices, then 4 × 2 = 8 slices were given out in total.

  9. Extended Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Extended_Euclidean_algorithm

    The second way to normalize the greatest common divisor in the case of polynomials with integer coefficients is to divide every output by the content of , to get a primitive greatest common divisor. If the input polynomials are coprime, this normalisation also provides a greatest common divisor equal to 1.