Search results
Results from the WOW.Com Content Network
The joule (/ dʒ uː l / JOOL, or / dʒ aʊ l / JOWL; symbol: J) is the unit of energy in the International System of Units (SI). [1] It is equal to the amount of work done when a force of one newton displaces a mass through a distance of one metre in the direction of that force.
Energy shares the same unit of measurement with work (Joules) because the energy from the object doing work is transferred to the other objects it interacts with when work is being done. [17] The work–energy principle states that an increase in the kinetic energy of a rigid body is caused by an equal amount of positive work done on the body ...
Energy is defined via work, so the SI unit of energy is the same as the unit of work – the joule (J), named in honour of James Prescott Joule [1] and his experiments on the mechanical equivalent of heat. In slightly more fundamental terms, 1 joule is equal to 1 newton metre and, in terms of SI base units
Perpendicular distance between repeating units of a wave m L: Wavenumber: k: Repetency or spatial frequency: the number of cycles per unit distance m −1: L −1: scalar Work: W: Transferred energy joule (J) L 2 M T −2: scalar Young's modulus: E: Ratio of stress to strain pascal (Pa = N/m 2) L −1 M T −2: scalar; assumes isotropic linear ...
Thermodynamic work is one of the principal kinds of process by which a thermodynamic system can interact with and transfer energy to its surroundings. This results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, [1] or cause changes in electromagnetic, [2] [3] [4] or gravitational [5] variables.
energy density: joule per cubic meter (J/m 3) specific energy: joule per kilogram (J/kg) voltage also called electric potential difference volt (V) volume: cubic meter (m 3) shear force: velocity: meter per second (m/s) weight: newton (N) mechanical work: joule (J) width: meter (m)
In thermal engineering, exergy efficiency (also known as the second-law efficiency or rational efficiency) computes the effectiveness of a system relative to its performance in reversible conditions. It is defined as the ratio of the thermal efficiency of an actual system compared to an idealized or reversible version of the system for heat ...
List of orders of magnitude for energy; Factor (joules) SI prefix Value Item 10 0: J 1 J: ≡ 1 N·m (newton–metre) 1 J: ≡ 1 W·s (watt-second) 1 J: Kinetic energy produced as an extra small apple (~100 grams [70]) falls 1 meter against Earth's gravity [71] 1 J: Energy required to heat 1 gram of dry, cool air by 1 degree Celsius [72] 1.4 J