Search results
Results from the WOW.Com Content Network
An iodide ion is the ion I −. [2] Compounds with iodine in formal oxidation state −1 are called iodides.In everyday life, iodide is most commonly encountered as a component of iodized salt, which many governments mandate.
• The -1 oxidation state, hydrogen iodide, is not an oxide, but it is included in this table for completeness. The periodates include two variants: metaperiodate IO − 4 and orthoperiodate IO 5− 6.
Most metal iodides with the metal in low oxidation states (+1 to +3) are ionic. Nonmetals tend to form covalent molecular iodides, as do metals in high oxidation states from +3 and above. Both ionic and covalent iodides are known for metals in oxidation state +3 (e.g. scandium iodide is mostly ionic, but aluminium iodide is not).
This is an accepted version of this page This is the latest accepted revision, reviewed on 9 January 2025. This article is about the chemical element. For other uses, see Iodine (disambiguation). Chemical element with atomic number 53 (I) Iodine, 53 I Iodine Pronunciation / ˈ aɪ ə d aɪ n, - d ɪ n, - d iː n / (EYE -ə-dyne, -din, -deen) Appearance lustrous metallic gray solid, black ...
This page was last edited on 29 September 2024, at 06:15 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
Hypervalent iodine oxyanions are known for oxidation states +1, +3, +5, and +7; organic analogues of these moieties are known for each oxidation state except +7. In terms of chemical behavior, λ 3 ‑ and λ 5 ‑iodanes are generally oxidizing and/or electrophilic species. They have been widely applied towards those ends in organic synthesis. [1]
Thyroid peroxidase, also called thyroperoxidase (TPO), thyroid specific peroxidase or iodide peroxidase, is an enzyme expressed mainly in the thyroid where it is secreted into colloid. Thyroid peroxidase oxidizes iodide ions to form iodine atoms for addition onto tyrosine residues on thyroglobulin for the production of thyroxine (T 4 ) or ...
In this protocol, iodide ion is generated by the following slow reaction between the iodate and bisulfite: IO − 3 + 3 HSO − 3 → I − + 3 HSO − 4. This first step is the rate determining step. Next, the iodate in excess will oxidize the iodide generated above to form iodine: IO − 3 + 5 I − + 6 H + → 3 I 2 + 3 H 2 O