Search results
Results from the WOW.Com Content Network
The anion gap is representative of how many ions are not accounted for by the lab measurements used in the calculation. These "unmeasured" ions are mostly anions, which is why the value is called the "anion gap." [3] By definition, only the cations sodium (Na +) and potassium (K +) and the anions chloride (Cl −) and bicarbonate (HCO −
k H CO 2 is a constant including the solubility of carbon dioxide in blood. k H CO 2 is approximately 0.03 (mmol/L)/mmHg; p CO 2 is the partial pressure of carbon dioxide in the blood; Combining these equations results in the following equation relating the pH of blood to the concentration of bicarbonate and the partial pressure of carbon ...
Cyanobacteria such as these carry out photosynthesis.Their emergence foreshadowed the evolution of many photosynthetic plants and oxygenated Earth's atmosphere.. Biological carbon fixation, or сarbon assimilation, is the process by which living organisms convert inorganic carbon (particularly carbon dioxide, CO 2) to organic compounds.
The anion gap (AG) without potassium is calculated first and if a metabolic acidosis is present, results in either a high anion gap metabolic acidosis (HAGMA) or a normal anion gap acidosis (NAGMA). A low anion gap is usually an oddity of measurement, rather than a clinical concern.
The bicarbonate ion (hydrogencarbonate ion) is an anion with the empirical formula HCO − 3 and a molecular mass of 61.01 daltons; it consists of one central carbon atom surrounded by three oxygen atoms in a trigonal planar arrangement, with a hydrogen atom attached to one of the oxygens.
High anion gap metabolic acidosis is a form of metabolic acidosis characterized by a high anion gap (a medical value based on the concentrations of ions in a patient's serum). Metabolic acidosis occurs when the body produces too much acid , or when the kidneys are not removing enough acid from the body.
Cell membranes are generally impermeable to charged ions (i.e. H +, HCO 3 −) but RBCs are able to exchange bicarbonate for chloride using the anion exchanger protein Band 3. Thus, the rise in intracellular bicarbonate leads to bicarbonate export and chloride intake. The term "chloride shift" refers to this exchange.
This glycerate is a biochemically significant metabolic intermediate in both glycolysis and the Calvin-Benson cycle. The anion is often termed as PGA when referring to the Calvin-Benson cycle. In the Calvin-Benson cycle, 3-phosphoglycerate is typically the product of the spontaneous scission of an unstable 6-carbon intermediate formed upon CO 2 ...