enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binomial theorem - Wikipedia

    en.wikipedia.org/wiki/Binomial_theorem

    In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power ⁠ (+) ⁠ expands into a polynomial with terms of the form ⁠ ⁠, where the exponents ⁠ ⁠ and ⁠ ⁠ are nonnegative integers satisfying ⁠ + = ⁠ and the coefficient ⁠ ⁠ of each term is a specific positive integer ...

  3. Binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Binomial_coefficient

    In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers n ≥ k ≥ 0 and is written (). It is the coefficient of the x k term in the polynomial expansion of the binomial power (1 + x) n; this coefficient can be ...

  4. Gaussian binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Gaussian_binomial_coefficient

    The Gaussian binomial coefficient, written as () or [], is a polynomial in q with integer coefficients, whose value when q is set to a prime power counts the number of subspaces of dimension k in a vector space of dimension n over , a finite field with q elements; i.e. it is the number of points in the finite Grassmannian (,).

  5. Multinomial theorem - Wikipedia

    en.wikipedia.org/wiki/Multinomial_theorem

    In mathematics, the multinomial theorem describes how to expand a power of a sum in terms of powers of the terms in that sum. It is the generalization of the binomial theorem from binomials to multinomials .

  6. Binomial approximation - Wikipedia

    en.wikipedia.org/wiki/Binomial_approximation

    The approximation can be proven several ways, and is closely related to the binomial theorem. By Bernoulli's inequality , the left-hand side of the approximation is greater than or equal to the right-hand side whenever x > − 1 {\displaystyle x>-1} and α ≥ 1 {\displaystyle \alpha \geq 1} .

  7. Trinomial expansion - Wikipedia

    en.wikipedia.org/wiki/Trinomial_expansion

    In mathematics, a trinomial expansion is the expansion of a power of a sum of three terms into monomials. The expansion is given by The expansion is given by ( a + b + c ) n = ∑ i , j , k i + j + k = n ( n i , j , k ) a i b j c k , {\displaystyle (a+b+c)^{n}=\sum _{{i,j,k} \atop {i+j+k=n}}{n \choose i,j,k}\,a^{i}\,b^{\;\!j}\;\!c^{k},}

  8. Binomial series - Wikipedia

    en.wikipedia.org/wiki/Binomial_series

    The binomial series is therefore sometimes referred to as Newton's binomial theorem. Newton gives no proof and is not explicit about the nature of the series. Later, on 1826 Niels Henrik Abel discussed the subject in a paper published on Crelle's Journal, treating notably questions of convergence. [4]

  9. FOIL method - Wikipedia

    en.wikipedia.org/wiki/FOIL_method

    First ("first" terms of each binomial are multiplied together) Outer ("outside" terms are multiplied—that is, the first term of the first binomial and the second term of the second) Inner ("inside" terms are multiplied—second term of the first binomial and first term of the second) Last ("last" terms of each binomial are multiplied)