enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Template metaprogramming - Wikipedia

    en.wikipedia.org/wiki/Template_metaprogramming

    The code above will execute at run time to determine the factorial value of the literals 0 and 4. By using template metaprogramming and template specialization to provide the ending condition for the recursion, the factorials used in the program—ignoring any factorial not used—can be calculated at compile time by this code:

  3. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    In the recursive calls to the algorithm, the prime number theorem can again be invoked to prove that the numbers of bits in the corresponding products decrease by a constant factor at each level of recursion, so the total time for these steps at all levels of recursion adds in a geometric series to (⁡).

  4. Recursion (computer science) - Wikipedia

    en.wikipedia.org/wiki/Recursion_(computer_science)

    where a represents the number of recursive calls at each level of recursion, b represents by what factor smaller the input is for the next level of recursion (i.e. the number of pieces you divide the problem into), and f(n) represents the work that the function does independently of any recursion (e.g. partitioning, recombining) at each level ...

  5. Corecursion - Wikipedia

    en.wikipedia.org/wiki/Corecursion

    A classic example of recursion is computing the factorial, which is defined recursively by 0! := 1 and n! := n × (n - 1)!.. To recursively compute its result on a given input, a recursive function calls (a copy of) itself with a different ("smaller" in some way) input and uses the result of this call to construct its result.

  6. Recursion - Wikipedia

    en.wikipedia.org/wiki/Recursion

    A classic example of recursion is the definition of the factorial function, given here in Python code: def factorial ( n ): if n > 0 : return n * factorial ( n - 1 ) else : return 1 The function calls itself recursively on a smaller version of the input (n - 1) and multiplies the result of the recursive call by n , until reaching the base case ...

  7. Memoization - Wikipedia

    en.wikipedia.org/wiki/Memoization

    function factorial (n is a non-negative integer) if n is 0 then return 1 [by the convention that 0! = 1] else if n is in lookup-table then return lookup-table-value-for-n else let x = factorial(n – 1) times n [recursively invoke factorial with the parameter 1 less than n] store x in lookup-table in the n th slot [remember the result of n! for ...

  8. Fibonorial - Wikipedia

    en.wikipedia.org/wiki/Fibonorial

    Here the fibonorial constant (also called the fibonacci factorial constant [1]) is defined by = = (), where = and is the golden ratio. An approximate truncated value of C {\displaystyle C} is 1.226742010720 (see (sequence A062073 in the OEIS ) for more digits).

  9. Lambda calculus - Wikipedia

    en.wikipedia.org/wiki/Lambda_calculus

    Now, to perform our recursive call to the factorial function, we would simply call (Y G) n, where n is the number we are calculating the factorial of. Given n = 4, for example, this gives: (Y G) 4 G (Y G) 4 (λr.λn.(1, if n = 0; else n × (r (n−1)))) (Y G) 4 (λn.(1, if n = 0; else n × ((Y G) (n−1)))) 4